
Appendix

A. Irreducible tensors

Basic relations:

Î
i
± = Î
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Single spin irreducible operators:
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Irreducible tensors for two spin system coupled via dipolar coupling:
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(A.3)

T̂
ij
2,±2 = 1

2 Î
i
±Î

j
± .

We can drop indexes in equation (A.3) and for two spins Ii and Ij we will write (α = x, y, z

and k = 0, 1, 2):

Îα = Î
i
α + Î

j
α

T̂ 2,k = 2 T̂
ij
2,k . (A.4)

With the help of these definitions the relations in Tables A.1 and A.2 can be derived.
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112 Irreducible tensors

Table A.1: Effect of dipolar Hamiltonian ĤD = −
√

2
3
ωD T̂ 2,0 on spherical tensor operators.

ρ̂ e
i
√

2
3
T̂ 2,0 ωD t

ρ̂ e
−i

√
2
3
T̂ 2,0 ωD t

Îz Îz (invariant)

T̂ 2,0 T̂ 2,0 (invariant)

(T̂ 2,2 ± T̂ 2,−2) (T̂ 2,2 ± T̂ 2,−2) (invariant)

Îx Îx cos(ωD t) − i(T̂ 2,1 + T̂ 2,−1) sin(ωD t)

Îy Îy cos(ωD t) − (T̂ 2,1 − T̂ 2,−1) sin(ωD t)

(T̂ 2,1 + T̂ 2,−1) (T̂ 2,1 + T̂ 2,−1) cos ωD t − iÎx sin(ωD t)

(T̂ 2,1 − T̂ 2,−1) (T̂ 2,1 − T̂ 2,−1) cos ωD t + Îy sin(ωD t)

Table A.2: Effect of 900 r.f. pulses x,y on spherical tensor operators, respectively.

ρ̂ e∓i π
2
Îx ρ̂ e±i π

2
Îx e∓i π

2
Îy ρ̂ e±i π

2
Îy

Îz ∓Îy ±Îx

Îx Îx (invariant) ∓Îz

Îy ±Îz Îy (invariant)

T̂ 2,0 −1
2 T̂ 2,0 −

√
3
8
(T̂ 2,2 + T̂ 2,−2) −1

2 T̂ 2,0 +
√

3
8
(T̂ 2,2 + T̂ 2,−2)

(T̂ 2,1 + T̂ 2,−1) −(T̂ 2,1 + T̂ 2,−1) ∓(T̂ 2,2 − T̂ 2,−2)

(T̂ 2,1 − T̂ 2,−1) ∓i(T̂ 2,2 − T̂ 2,−2) −(T̂ 2,1 − T̂ 2,−1)

(T̂ 2,2 + T̂ 2,−2) −√
3
2
T̂ 2,0 + 1

2(T̂ 2,2 + T̂ 2,−2)
√

3
2
T̂ 2,0 + 1

2(T̂ 2,2 + T̂ 2,−2)

(T̂ 2,2 − T̂ 2,−2) ∓i(T̂ 2,1 − T̂ 2,−1) ±(T̂ 2,1 + T̂ 2,−1)
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B. Wigner rotation matrices

The coordinate transformation with Euler angles (ϕ, ϑ, ψ) is described by the Wigner

rotation matrices D(L)
k,q given by ([SR94, Hae76])

D(L)
k,q (ϕ, ϑ, ψ) = e−ikϕ d

(L)
k,q (ϑ) e−iqψ , (B.1)

where factors d
(2)
k,q(ϑ) relevant for this work are defined in Table B.1.

A useful relation of the Wigner matrices is their ’addition theorem’. It relates the

Wigner matrices of two successive rotations A→B and B→C to the Wigner matrices of

overall rotation A→C:

D(L)
q,q′(ΩAC) =

L∑
m=−L

D(L)
q,m(ΩAB)D(L)

m,q′(ΩBC) . (B.2)

Euler angle ΩAC = (ϕAC , ϑAC , ψAC) represents overall rotation A→C, etc.

Table B.1: ϑ dependent factors d
(2)
k,q(ϑ) of the Wigner functions D(L)

k,q (ϕ, ϑ, ψ).

d
(2)
k,q(ϑ) q = 2 q = 1 q = 0

k = 2 1
4(1 + cosϑ)2 −1

2(1 + cos ϑ) sin ϑ
√

3
8
sin2 ϑ

k = 1 1
2(1 + cos ϑ) sin ϑ 1

2(cos ϑ − 1) + cos2 ϑ −√
3
8
sin 2ϑ

k = 0
√

3
8
sin2 ϑ

√
3
8
sin 2ϑ 1

2(3 cos2 ϑ − 1)

k = −1 1
2(1 − cos ϑ) sin ϑ 1

2(1 + cos ϑ) − cos2 ϑ
√

3
8
sin 2ϑ

k = −2 1
4(1 − cos ϑ)2 1

2(1 − cos ϑ) sin ϑ
√

3
8
sin2 ϑ

d
(2)
k,q(ϑ) q = −1 q = −2

k = 2 −1
2(1 − cos ϑ) sin ϑ 1

4(1 − cos ϑ)2

k = 1 1
2(1 + cos ϑ) − cos2 ϑ −1

2(1 − cos ϑ) sin ϑ

k = 0 −√
3
8
sin 2ϑ

√
3
8
sin2 ϑ

k = −1 1
2(cos ϑ − 1) + cos2 ϑ −1

2(1 + cos ϑ) sin ϑ

k = −2 1
2(1 + cos ϑ) sin ϑ 1

4(1 + cos ϑ)2
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C. Intensity of the DQ coherence for two spins-1/2 coupled via

dipolar coupling

Intensity of the signal SI just after the reconversion period in MQ experiment is going

to be calculated. System of two spins-1/2 coupled via dipolar coupling isolated from the

surrounding will be only considered. It will be shown that DQ signal just after the recon-

version period is stored in the longitudinal magnetization. Considering this assumption no

evolution during purging period between reconversion and detection pulse (see e.g. Fig-

ure 2.20) take place because of the vanishing commutator relation [T̂ 2,0, Îz] = 0 valid for

dipolar coupled spins (see also equation (1.59)). Under this circumstance DQ signal just

after the reconversion period is assumed to be the signal detected just after the detecting

pulse.

In addition if so-called total spin coherence ([Wei83, Mun87]) is excited during excita-

tion period all coupled spins are active in MQ coherences, therefore, no evolution (during

evolution period) under total dipolar Hamiltonian (equation (1.59)) take place. Assuming

this condition signal intensity just after the reconversion period can be written as

SI =
Tr

{
Îz Û recÛ exc cÎz Û

+

excÛ
+

rec

}
Tr

{
Îz cÎz

} . (C.1)

Û exc and Û rec are propagators for excitation and reconversion period, respectively. Initial

state of the system is ρ̂(0) = cÎz. Invariance of the trace from the cyclic change of the

operators can be used for equation (C.1) and we will get (Tr{Î 2
z } = 2 for two spin-1/2

system)

SI = 1
2 Tr

{
Û

+

recÎzÛ rec Û excÎzÛ
+

exc

}
. (C.2)

We will for the moment assume that Û rec = Û
+

exc = eiĤDQ t. This is good valid for static

solids. In general it is also valid for rotating solids with an exception that reconversion

Hamiltonian is in addition rotor modulated (see e.g. equations (2.52) and (2.48)). To

calculate equation (C.2) it is enough to concentrate to the evaluation of the term

f(t) def= Û Îz Û
+

, (C.3)

where Û will be expressed in the form Û = e−iĤDQ t. At this point it is good to define DQ

Hamiltonian in the general form ĤDQ =
∑

i<j ωij T̂
ij
2,2 + ω∗

ij T̂
ij
2,−2 which represents time

independent average Hamiltonian during excitation period as well as during reconversion
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period for particular pulse sequence (see e.g sections 2.5.1.1 - 2.5.1.3 or section 2.4.1.2).

Propagator of the time independent average Hamiltonian is than given as

Û = e
−i

∑
i<j

(
ωij T̂

ij
2,2+ω∗

ij T̂
ij
2,−2

)
t
. (C.4)

In general operators in exponent do not commute and thus we will now assume only two

spin approximation. Hence, in the limit of two spin system interaction summation from

equation (C.4) can be removed. Substituting propagator Û in equation (C.3) with above

equation we will get

f(t) = e
−i

(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t
Îz e

i
(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t
. (C.5)

Differentiating of this equation by time up to the second order and using commutator

relation valid for two spin-1/2 system

[T̂
ij
2,±2, Îz] = ∓ 2 T̂

ij
2,±2 , (C.6)

we will get

ḟ(t) = −i e
−i

(
ω T̂
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2,2+ω∗ T̂
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)
t [ω T̂
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2,−2, Îz] e

i
(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t

= 2 i e
−i

(
ω T̂
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2,2+ω∗ T̂

ij
2,−2

)
t
(
ω T̂

ij
2,2 − ω∗ T̂

ij
2,−2

)
e
i
(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t (C.7)

f̈(t) = 2 e
−i

(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t [ω T̂

ij
2,2 + ω∗ T̂

ij
2,−2, ω T̂

ij
2,2 − ω∗ T̂

ij
2,−2]e

i
(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t

= −4 (ω · ω∗) e
−i

(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t [T̂

ij
2,2, T̂

ij
2,−2] e

i
(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t
. (C.8)

In the limit of two spin interaction we can write commutator in equation (C.8) as

[T̂
ij
2,2, T̂

ij
2,−2] =

1
4
(Î

i
z + Î

j
z ) =

1
4
Îz , (C.9)

so second derivation of the f(t) can be now directly evaluated

f̈(t) = −|ω|2 e
−i

(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t
Îz e

i
(
ω T̂

ij
2,2+ω∗ T̂

ij
2,−2

)
t = −|ω|2 f(t) . (C.10)

This represents differential equation with the formal solution

f(t) = A cos(|ω|t) + B sin(|ω|t) . (C.11)

Arguments A and B can be simply derived comparing results from equations (C.5), (C.7)

at t = 0 (f(t = 0), ḟ(t = 0)). It can be found that

A = Îz and B = 2 i

(
ω

|ω| T̂
ij
2,2 −

ω∗

|ω| T̂
ij
2,−2

)
. (C.12)



116 Intensity of the DQ coherence for two spins-1/2 coupled via dipolar coupling

If f(t) is already known intensity of the signal SI at the end of the reconversion period

can be calculated (see equation (C.2)). Under the assumption Û rec = Û
+

exc and relations

valid for two spin-1/2 system

T̂
ij
2,±2 · T̂

ij
2,±2 = 0 and Tr

{
T̂

ij
2,±2 · Îz

}
= 0 (C.13)

the signal intensity gets the form

SI = 1
2Tr

{
f(t)2

}
= 1

2Tr
{

Î
2
z cos2(|ω|t)

}
+ Tr

{
2
(
T̂

ij
2,2 ·T̂

ij
2,−2 + T̂

ij
2,−2 ·T̂

ij
2,2

)
sin2(|ω|t)

}
.

(C.14)

The second term in this equation correspond to the DQ signal and the first one represents

the polarization of the spin system and has to be filtered out from the spectrum. The first

term also can not by manipulated through e.g. TPPI (see section 2.4.3) and will appear

at the different frequency position as DQ coherence. Using the condition valid for two

spin-1/2 system

Tr
{

T̂
ij
2,2 · T̂

ij
2,−2 + T̂

ij
2,−2 · T̂

ij
2,2

}
= Tr

{
1
8

1̂1
}

=
1
2

(C.15)

intensity of DQ coherence from equation (C.14) can be simply evaluated

SDQ
I = sin2(|ω|t) . (C.16)

The rest magnetization of the spin system is than

Mz = cos2(|ω|t) . (C.17)

In the case when Û rec 6= Û
+

exc the result given in equation for DQ intensity is not more

valid and equation (C.2) has to be solved in more details. One has to calculate separately

differential equation for reconversion period and the result will end up with the following

equation1

SDQ
I = Φω sin(|ωrec|t) sin(|ωexc|t) , (C.18)

where

Φω =
ωrec ω∗

exc + ω∗
rec ωexc

2 |ωrec| |ωexc| . (C.19)

Complex terms ωexc and ωrec represent amplitudes and phases of DQ excitation and

reconversion Hamiltonian one by one. Φω is the phase of the DQ signal. t is excita-

tion/reconversion time usually marked in this work like τ . To write equations (C.18) and

(C.19) in more convenient way it is useful to separate amplitude and the phase from ω so:

1We will assume that duration of the excitation and the reconversion period is equal texc = trec = t.
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ωrec = |ωrec|ei Φrec , ωexc = |ωexc|ei Φexc . Using this definitions equations (C.18) and (C.19)

will become more transparent. It holds that

SDQ
I = cos(Φrec − Φexc) sin(|ωrec|τ) sin(|ωexc|τ) . (C.20)

The phase modulation of the DQ signal is from above equation evident from cosine factor

cos(Φrec − Φexc). It has to be noted that this phase modulation has no influence to the

signal originating from the polarization of the spin system described by equation (C.17).


