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PREFACE

Two fascinating subjects have been put together in this book: the magnetism of
matter and magnetic resonance phenomena. The first of these has captured the
imagination of humankind for 3000 years; the second theme has a much shorter
history, started half a century ago.

Both subjects have grown to become major technical forces: the world market
for magnetic media and recording equipment reaches about $100 billion per year
(Simonds 1995); also, the value of the magnetic materials produced today is
larger than that of semiconductor materials, which are the basis of the present
technological revolution. The application of magnetic resonance to medicine is
revolutionizing diagnosis and changing the image of the human body.

The present text provides a succinct presentation of the properties of magnetic
materials, hyperfine interactions in condensed matter, and the phenomenon of
nuclear magnetic resonance. Nuclear magnetic resonance in magnetic materials
is included as an application of these subjects.

This book is intended for final-year undergraduate courses, or graduate
courses in magnetism, magnetic materials, and magnetic resonance. With the
growth in the applications of magnetism in permanent magnets, soft magnetic
materials, magnetic recording, and magnetic resonance imaging (MRI), the text
will be useful to materials scientists, physicists, and other specialists.

The text was organized from lecture notes on the introductory part of the
course “Introduction to Magnetism,” taught to graduate students at the
Brazilian Center for Physical Research (CBPF). The exercises and solutions
were written by Dr. Ivan S. Oliveira; I owe him also the stimulus for writing this
book and the conversion of the original manuscript to Latex.

I have used SI units throughout; the units, symbols, and nomenclature
recommended by the General Conference on Weights and Measures, and the
International Organization of Standardization (ISO), are contained in a publica-
tion of the National Institute of Standards and Technology (NIST) (1995)

xi



Xii PREFACE

(available from www.nist.gov). At each point 1 have included the conversion
factors to the centimeter—gram—second (CGS) system. Some plots of experimental
results are in CGS units, reflecting the present state of the literature on magnetism,
in which the two systems coexist. On the use of the magnetic induction B or
magnetic field intensity H, see Shadowitz (1975) and Crooks (1979).

In the choice of references presented along the text, I have preferred to
indicate review articles and textbooks, with the intention of reinforcing the
didactic function of the book.

I have tried to keep the text short; the books of Smart (1966) and McCausland
and Mackenzie (1980) are two very different and successful examples of short
texts, and were used as references in some chapters.

Acknowledgements are due to Dr. R. C. O’Handley for the hospitality during
the period 1993—94, spend at the Massachusetts Institute of Technology, where
some parts on macroscopic magnetism were first written.

I thank especially J. S. Helman, H. Micklitz, and X. A. da Silva for reading the
manuscript and for many suggestions. We also acknowledge the comments of
W. Baltensperger, V. M. T. Barthem, G. J. Bowden, W. D. Brewer, M. A. Con-
tinentino, H. Figiel, E. Gratz, D. Guenzburger, L. lannarella, Cz. Kapusta,
M. Knobel, H. R. Rechenberg, H. Saitovitch, L. C. Sampaio, J. Terra, and
M. Wojcik.

I am especially grateful to my students V. L. B. de Jesus, R. Sarthour, Jr., and
C. V. B. Tribuzy for their help in the trial of the first version of the text.
I acknowledge the work of L. Baltar, with the figures.

Finally, suggestions and comments are welcome.

A. P. GUIMARAES

Centro Brasileiro de Pesquisas Fisicas
R. Xavier Sigaud 150
22290-180 Rio de Janeiro, RJ, Brazil

apguima@cat.cbpf.br
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INTRODUCTION

1.1 MAGNETISM OF MATTER

The discipline of magnetism studies the magnetic fields, the magnetic properties
of matter, and the interactions between matter and the fields. The magnetic field
is a fundamental concept of magnetism: it is a field of forces that describes a
property of space in the neighborhood of either charges in motion, or of
magnets. Its presence can be detected, for example, through the force exerted
on a probe consisting of a wire traversed by a current.

Materials exhibit different behaviors in the presence of a magnetic field.
The most evident differences may be observed through the changes in the
magnetic field itself in the neighborhood of the samples under study, or
through the forces exerted on them by a distribution of magnetic fields. The
three traditional classes of materials, in terms of magnetic behavior, are dia-
magnets, paramagnets, and ferromagnets. Materials of the first type are repelled
from a region of more intense field, those of the second type are attracted, and the
last type are strongly attracted; except for the last effect, these observations
require very sensitive instruments. Inside these three classes of materials, a
property known as magnetic induction also behaves in a differentiated way: it is,
respectively, reduced, increased, or greatly increased in relation to its value in
vacuum.

Before examining the classes of magnetic materials, we will briefly survey the
magnetic quantities. For a revision of this topic, see, for example, Grant and
Phillips (1990). Definitions and recommendations on the use of magnetic units
can be found in Taylor (1995) and Cohen and Giacomo (1987).



2 INTRODUCTION
1.2 MAGNETIC QUANTITIES AND UNITS

A magnet creates a magnetic field in the space around it; a magnetic field can also
be created by an electric current. The physical quantity that describes the effect of
a magnet or current in its neighborhood is the magnetic induction or magnetic
flux density B. A measure of the magnetic induction may be given by the Lorentz
force, the force on a charge ¢ in motion. The Lorentz force acting on a charge
that moves with a velocity v is given by

F=4gvxB (L.1)

The unit of magnetic induction in the SI (Systéme International d’Unités) system
of units is the tesla (T), defined as the magnetic induction that produces a force of
1 newton on a charge of 1 coulomb, moving with a velocity of 1 ms™" in the
direction perpendicular to that of B. The unit of B in the CGS (centimeter—
gram—second) system is the gauss (G), which corresponds to 10™* T.

The fundamental equations of classical electromagnetism, which involve its
main physical quantities, are Maxwell equations, given in Table 1.I (SI)
(e.g., Grant and Phillips 1990).

In the equations shown in Table 1.1, H is the magnetic field intensity, D is the
displacement vector, p is the electric charge density and j is the current density.
In j are included the conduction currents proper and also convection currents
(those where there is motion of matter) (Shadowitz 1975).

The effect of a magnetic field may be characterized by the magnetic induction
(or flux density) B or the magnetic field intensity H. The tendency in recent
decades has been to emphasize B as a more fundamental quantity (e.g., Crooks
1979). One justification for this choice is the higher degree of generality of B; the
curl of B is equal to u, times the total current density j,, including convection
currents and currents associated to the magnetization (Shadowitz 1975); u is the
vacuum magnetic permeability, a constant equal to 4w X 1077 Hm™! (henries
per meter) (SI).

As is usual in the literature, we will normally employ the word field when
referring to the induction; the notation B should remove any ambiguity with the
magnetic field intensity (H).

Before defining magnetization, we will define magnetic moment. Let us imagine
an infinitesimal closed circuit of area dS through which a current I flows. The

Table 1.1 Maxwell equations

curl H = j + 0D/ot Generalized Ampére law
curl E = — OB/ot Faraday law
divD =p Gauss law

divB =10 (Nonexistence of magnetic monopoles)
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magnetic dipole moment, or magnetic moment associated with this circuit is
dm=1dS (1.2)

where dS is the oriented element of area, defined by the sense of the current, and
given by the right-hand rule. The magnetic moment is measured in joules per tesla
IJT Y (=A m?) (in SI), and in ergs per gauss (erg/G) [also referred to as emu
(electromagnetic unit), although strictly speaking, this is not a unit] (in CGS).

The magnetization M of a body is its total magnetic moment divided by its
volume, a quantity that is numerically equivalent to

M=nm (1.3)

where nis the number of magnetic moments m per unit volume. The magnetiza-
tion M is measured in amperes per meter (Am~") or webers per square meter
(Wbm™?)in SI units and in oersteds (Oe) in the CGS system. Table 1.11 presents
values of the magnetization M measured for the elements iron, cobalt, and
nickel.

The magnetic field intensity H is defined as

B
H=—- 1.4
Ho (14)

and has no specific unit in the SI, being measured in amperes per meter (A m™'y;
note that it has the same dimension as M. In the CGS, it is measured in oersteds
(Oe). The constant p, is the vacuum permeability [1, = 47 X 107" Hm™" (SI)).
In the CGS system, p has a value of 1 gauss per oersted; therefore, the magnetic
field intensity (in oersted) and the magnetic induction (in gauss) have the same
numerical value.

A magnetic current that flows through a conductor produces a magnetic
field; 1Am™! is the intensity of the field inside a solenoid of infinite length,
with N turns per meter, traversed by a current of 1/N amperes. For practical
purposes, the magnetic fields are produced either by the action of electrical
currents flowing through coils, or by means of permanent magnets. Table 1.I1T

Table 1.l Magnetization M and polarization J for the elements Fe, Co, and Ni at low
temperature

M J(= poM) T
Element (10°Am™") (T) (K)
Fe 1766 2.219 42
Co 1475 1.853 421
Ni 528 0.663 421

“ M values from Landolt-Bornstein, Magnetic Properties of 3d Elements, New Series II1/19a,
Springer-Verlag, Berlin, 1986, p. 37.



4 INTRODUCTION

Table 1.l Typical values of the magnetic induction B in tesla,
associated with different sources, including the surface of some
astronomical bodies

Origin or Site B(inT)
Brain 1072
Galactic disk 10710
Heart 10710
Earth 10~
Sunspots 107!
Permanent magnets 107!
Ap-type stars 1
Electromagnets 1
Superconducting coil 1-10
Nucleus of metallic Fe 30
Nucleus of metallic Ho (4.2 K) 737
White dwarf stars <10
Neutron stars 108

presents some values of magnetic induction obtained either through these means,
or observed in Nature.

The vectors B and H obey different boundary conditions in the frontier of
material media:

B, is continuous.
H| is continuous.

We can read the definition of H [Eq. (1.4)] in the following way: there are two
contributions to the magnetic induction B in a material medium; one arising
from the magnetic field H (equal to uoH), and another contribution proportional
to the magnetization, equal to pM. The total induction in the medium becomes

B = 11o(H + M) (1.5)

Whenever we refer to material media, we will mean by H the internal magnetic
field intensity.
In the CGS system, the fields B and H are related through

B=H+4mM (CGS) (1.6)
with B in gauss (G) and H in oersted (Oe); M is measured in ergs G~ em™>, or
sometimes in emu cm™".

Another form of characterizing magnetic materials is through the use of the
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polarization J (also known as intensity of magnetization I), defined by
J = peM (1.7)

and measured, as B, in tesla.'

The measure of the magnetic response of a medium to the action of a magnetic
field of intensity H is given by its magnetic susceptibility x. The magnetic
susceptibility (volume susceptibility) x is dimensionless and given by

M
X=g (1.8)
or in differential form, by x = OM/OH. The mass susceptibility (or specific
susceptibility) x, is the total magnetic moment divided by the field H, divided by
the mass, and is measured in cubic meters per kilogram; it is related to the volume
susceptibility through x, = x/p, where p is the density.

The magnetic response of a medium can also be measured by its magnetic
permeability, denoted by p. If the proportionality of M and H is observed, then

B = H (1.9)

where p is the magnetic permeability. A more general definition of u is given by
@ = B/H. The magnetic permeability of a material is in general not a constant,
but depends on the value of the field H.

In anisotropic media, p, and also x, depend on the direction of the applied
field, and are second-rank tensors.

We can define the relative magnetic permeability p, of a medium, in terms of
the vacuum magnetic permeability zu:

m
Wy =— 1.10
Ho ( )

The relative magnetic permeability y, is related to the susceptibility x, and it
follows, from Eqs. (1.8) and (1.9)

pr=1+x (L.11)

The relative permeability in the SI is numerically equal to the CGS permeability.
From Eq. (1.6), we obtain u, = 1 + 47y (CGS), and therefore, the SI suscepti-
bility is a number 47 times larger than xcgs-

!This form of describing the effects of the magnetization is part of the Kennelly convention; it is
different, but it is not incompatible with the Sommerfeld convention, which we have adopted, and
which is the one most frequently used in physics.
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Table 1.lV  Magnetic (volume) susceptibility x and relative magnetic
permeability 1., of some elements at room temperature?

Element x x 10° Ly

Na 8.09 1.000008
K 5.76 1.000006
Al 20 1.000020
Ti 182 1.000182
Cr 286 1.000286
Mn 830 1.000830
Cu -9.7 0.999990
Zn -12 0.999988
Ge -7.14 0.999993
Pd 789 1.000789
Ag —25.2 0.999975
Sb —68 0.999932
La 56 1.000056
Pt 261 1.000261
Au -34.6 0.999965
Tl -36.4 0.999964

“ Derived from values of mass susceptibility x, (Landolt-Bdrnstein, Magnetic Proper-
ties of 3d Elements, Springer-Verlag, Berlin, 1962, p. 1-5); u, was computed from x
using Eq. (1.11).

e i —
i

R T

(b)

A‘

(a)

Figure 1.1 (a) Lines of magnetic field intensity H in the neighborhood of a sphere of material with
relative permeability 1., > 1 (or, equivalently, x > 0) introduced into an originally uniform field. Note
the smaller density of lines inside the sphere, representing a reduction in the modulus of H; (b) the
internal field H;,; and the magnetization M induced in the sphere.
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Table 1.IV shows room-temperature values of the susceptibility x and relative
permeability p, for some elements.

The directions and intensities of the field H and of the magnetic induction B
may be represented by lines of force; these are lines that have at every point of
space the same direction as H or B, with density per unit area proportional to the
intensity of the corresponding field. The lines of H and B reflect the different
properties of these fields; the lines of force of H start from the north (N) pole of
each magnetic dipole and end at the south (S) pole; the lines of B are closed. The
lines of H are analogous to the lines of force of the electric field E, with the
charges substituted by (fictitious) magnetic poles (Fig. 1.1).

In Fig. 1.1 one can see the lines of force of the field H in an (initially uniform)
field where a sphere of paramagnetic material (therefore a material with relative
permeability u, > 1) was introduced; Fig. 1.2 shows the lines of B in this case.

The lines of H inside a magnet and in the adjacent space initiate on the N pole
and end on the S pole; this can be seen in Fig. 1.3, which shows a magnet in the
absence of external applied fields.

The lines of induction B inside a magnetized medium point in the opposite
sense, specifically, from S to N (Fig. 1.4). In empty space, the lines of H and B
coincide, since B = poH.

A magnetized body has at its surface “free poles” that arise where the normal
component of the magnetization M goes through a discontinuity (Fig. 1.5). In

(&)

(@)

Figure 1.2 (&) Lines of magnetic induction B around a sphere of relative permeability ., > 1 (or,
equivalently, x > 0) introduced into an originally uniform field; (b) directions of B, and
magnetization M inside the sphere.
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Hint
-—

==
TN

H
(@)

Figure 1.3 (a) Lines of magnetic field intensity H inside and outside a magnet; (b) the internal field
H,: (equal to the demagnetizing field H, in the absence of external field) and magnetization M
inside a magnet.

the interior of the body, the opposite poles of the individual magnetic moments
compensate each other. The density of free poles is given by

p=M-n (1.12)

where n is the unit vector normal to the surface. The free poles produce an
additional field Hy, opposed to M. If the magnetization originates from the
action of an external magnetic field Hy, the field intensity H inside the body
therefore differs from Hy: H=H, — H,. The field H, is called the demagnetizing
field, its intensity is proportional to the value of the magnetization M, and its
direction is opposite to M. The intensity of the internal magnetic field in the
material, under an applied field Hy, is therefore:

H=H,- N;M (1.13)
where N, is the demagnetizing factor.

The demagnetizing factor N; depends on the shape of the body and the angle
between its axes of symmetry and the field H; it varies between 0 and 1 (or
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B,
\, - /
—s > N M
\

e

B
(@)

Figure 1.4 (a) Lines of the magnetic induction B inside and outside a magnet; (b) directions of B,
and magnetization M inside a magnet.

between 0 and 4« in the CGS system). For example, it is zero for an infinite
cylinder under the action of a field H parallel to its axis, and is equal to % fora
sphere (47/3 in CGS). To obtain the value of the demagnetizing factor in the SI,
the value in CGS has to be divided by 4 (see Table 1.V).

As an illustration, we can obtain the value of N, for a flat plate, under a field
H, applied perpendicular to its surface, noting simply that due to the continuity
of B, we have By = B. Therefore

B = po(H+M) = po(Hp — NyM +M) = poH, (1.14)

and it follows that N; =1 for a plane plate, with a perpendicular field.

In samples of arbitrary shape, the demagnetizing field varies from point to
point; the field is homogeneous only inside ellipsoidal samples. This includes
limiting case ellipsoids, with a = b = ¢ (sphere), a = 0 (plane), or b=c=10
(wire). The demagnetizing factors along the three axes of an ellipsoid are related:
NS+ NS+ N5=1.

In the most general case the demagnetizing field does not point along the same
axis as M, and the demagnetizing factor is a tensor N,.

The conversion factors between the SI and CGS systems for the units of the
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N S
N s

[N _SIN S[N SIN S| N
N SIN SN S N s
N s
N S
(@) ()

Figure 1.5 (a) Elementary magnetic dipoles in a magnetized sphere; (b) “free poles” at the
surface of the sphere, arising from the uncompensated poles of these dipoles.

most important magnetic quantities are given in Table 1.VI. For a discussion of
the units and quantities of magnetism, see Grandjean and Long (1990) and
Evetts (1992, p. 253).

One can analyze the behavior of the magnetic flux inside samples of magnetic
material using the properties of the fields B and H. Material media may be used
to form magnetic circuits, where the lines of force may be studied. In the case of a
closed magnetic circuit formed of a toroidal piece of magnetic material, there are
no free poles, and consequently no demagnetizing field (N, = 0). To be of any
use, however, a magnet normally has to have a gap, and the presence of a gap
opens the magnetic circuit.

As an example of a magnetic circuit, we may examine the case of a toroidal
magnetized sample, of cross section 4, with a gap of length /, (Fig. 1.6). From
Ampeére’s law, the line integral of H around the magnetic circuit is zero, because
there is no current. Calling H,, the intensity of the magnetic field inside the
magnetic material, and H, the field in the gap, one has

H,l, — H,l,, =0 (1.15)

where /,, is the length of the magnet. The magnetic flux across an area A of unit

Table 1.V Demagnetizing factors N, (S1)?

Shape Direction Ny

Plane 1
Plane 1l
Cylinder (//d = 1) I
Cylinder (//d = 5) I
Long cylinder I
Sphere —

oo
GO Do O =
PN |

9To obtain the values in the CGS system, divide by 4.
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Table 1.VI Magnetic quantities and units®

Conversion

Quantity Symbol CGS SI Factor
Magnetic induction B G T 10~
Magnetic field intensity H Oc Am™ 10°/4x
Magnetization M erg G~ em™? Am™ 10°

or emu cm ™3
Magnetic polarization J — T —
Magnetic moment m ergG™! (= emu) IT ' (=Am?) 1073
Specific magnetization o emug” Am’kg =TT "kg™) 1
Magnetic flux ¢ Mx (maxwell) Wb (weber) 1078
Magnetic energy density E erg cm™> Jm™? 107"
Demagnetizing factor Ny — — 1/4n
Susceptibility (volume) X — — 4
Mass susceptibility Xg erg G~ g Oe”! m® kg™ 47 x 1073

or emu g_l Oe¢™!
Molar susceptibility Xmol emu mol ™! Oe™ m® mol™! 47 x 107 m3 mol ™!
Magnetic permeability 7 GOe™ Hm™! 47 x 1077
Relative permeability e — — 1
Vacuum permeability Lo GOe™! Hm™! ar x 1077
Anisotropy constant K erg em™3 Jm™3 107!
Gyromagnetic ratio v s 0e™! mA~!s™! 4r x 1073

“To obtain the values of the quantities in the SI, the corresponding CGS values should be multiplied by the conversion factors.
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Figure 1.6 Lines of magnetic field intensity H and B inside a sample of toroidal shape, with a gap.

normal i is ¢ = B+ 4. The continuity of ¢ along the circuit gives
¢ = ByA = pyH,A = B, A (1.16)

where B, is the field B inside the magnet. Combining these two equations, it
follows

2 1 Vm
H; = w7, (B, H,,) (1.17)
where V), and V, are the volumes of the magnet and gap, respectively. This
shows that the intensity of the magnetic field in the gap (H,) increases with the
product B, H,, (or BH), called the energy product; the square of H, is directly
proportional to (BH).

Magnetic circuits are analogous in many respects to electrical circuits; one
important difference arises from the fact that the ratio of permeabilities in the
magnetic material and in vacuum is much smaller than the corresponding ratio
of conductivities between an electric conductor and the vacuum. This implies
that the flux density across an open magnetic circuit is significant, whereas the
charge flow in an open electrical circuit can be neglected.

1.3 TYPES OF MAGNETISM

The magnetic properties of matter originate essentially from the magnetic
moments of electrons in incomplete shells in the atoms (see Chapter 2), and



TYPES OF MAGNETISM 13

from unpaired electrons in the conduction band (in the case of metals, see
Chapter 4). The incomplete shell may be, for example, the 3d shell—in the case of
the elements of the iron group, or the 4f shell—in the rare earths.

Magnetic materials are those that present permanent magnetic moments, with
spontaneous long range order; this order is due to an interaction of electrostatic
origin and quantum nature, called exchange interaction (see Chapter 3). The
interaction responsible for the magnetic order may be of short range—direct
exchange interaction—of long range, or indirect interaction.

A sample of magnetic material is generally formed of ordered regions, called
domains, inside which the magnetization points along the same direction, which
varies from one such region to the other (see Section 5.3). An external magnetic
field alters the structure of domains, but leaves practically unaltered the
magnetization inside each domain, that remains equal to the saturation magne-
tization.

The degree of structural order is important for the magnetism of matter; the
materials can be (1) crystalline, in which the atomic sites have translation
symmetry; (2) disordered, with atoms occupying randomly the sites of a crystal-
line lattice; and (3) amorphous, where there are no equivalent atomic sites.

In sequence, we will enumerate very briefly the main classes of magnetic
materials (Hurd 1982); although some concepts used in this classification are
defined in more detail in later chapters, the reader may benefit from this survey
by exposure to the wealth of magnetic properties of the substances.

1. Diamagnetism. Type of magnetism characterized by a small and negative
susceptibility, independent of temperature (Fig. 1.7). The susceptibility of every
substance presents a diamagnetic component; its origin lies in the shielding effect
due to the motion of atomic electrons. In diamagnetic materials this component
is dominant. Conduction electron currents in metals are responsible for Landau
diamagnetism, an effect of larger magnitude. Examples of diamagnetic
substances are the compound NaCl (sodium chloride) and copper oxide (CuO).

2. Paramagnetism. Magnetism characterized by a positive susceptibility
whose inverse varies linearly with temperature (Fig. 1.8). This type of tempera-
ture dependence (called the Curie law) is found at any temperature in the
paramagnetic materials, or above a certain temperature of magnetic order,
in ferromagnetic and antiferromagnetic materials (called in these cases the
Curie—Weiss law). The fall in the susceptibility with temperature originates in
the increase in the ratio of thermal energy to the energy of the atomic magnetic
moments in the presence of the external magnetic field. One type of para-
magnetism—Pauli paramagnetism—is due to the magnetic moments of the
conduction electrons and in this case the susceptibility is practically constant
with temperature.

3. Ferromagnetism. Type of magnetism characterized by an spontaneous
parallel alignment of atomic magnetic moments, with long range order (Fig. 1.9).
Examples of ferromagnets are the elements iron, nickel, and gadolinium. This
order disappears above a certain temperature, called the Curie temperature (T¢).
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Figure 1.7 Temperature dependence of the inverse of the susceptibility (1/x) of a diamagnetic
material. [Adapted from C. M. Hurd, Contemp. Phys., 23, 479 (1982), with permission from Taylor &
Francis, Bristol, PA.]

4. Antiferromagnetism. Magnetism in which the atomic moments align
antiparallel, with zero resulting magnetization (Fig. 1.10). Above the ordering
temperature—the Néel temperature (7y)—the inverse of the susceptibility
follows a linear dependence. Examples are FeO and Fe;Mn; a-Mn is an itinerant
antiferromagnet, and does not obey the Curie—Weiss law.
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Figure 1.8 Temperature dependence of the inverse of the susceptibility (1/x) of a paramagnetic
material (Curie law) and of a ferromagnetic material above the ordering temperature (Curie-Weiss
law). [Adapted from C. M. Hurd, Contemp. Phys., 23, 479 (1982), with permission from Taylor &
Francis, Bristol, PA.]
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Figure 1.9 Temperature dependence of the magnetization M of a ferromagnetic material,
dependence of the inverse susceptibility (1/x), and dependence of the magnetization on applied
magnetic field; also, schematic representation of ferromagnetism, with examples of ferromagnetic
materials. [Adapted from C. M. Hurd, Contemp. Phys., 23, 480 (1982), with permission from Taylor
& Francis, Bristol, PA.]

5. Ferrimagnetism. Magnetic order in which two or more different magnetic
species exist (atoms or ions) with collinear magnetic moments. In general, some
moments couple in an antiparallel fashion. The resulting magnetization is
nonzero (Fig. 1.11). Examples are magnetite, FeO-(Fe,03) and GdFe,.

6. Metamagnetism. This is a property of some substances in which the
antiferromagnetic order is altered by the application of an external magnetic
field, by virtue of its small anisotropy (Fig. 1.12); there is a type of itinerant
metamagnetism in which the magnetic field that produces this alteration is the
field around a magnetic impurity;.

7. Enhanced Pauli Paramagnetism. Also known as incipient ferromagnetism

M

My
T

Mg

Figure 1.10 Schematic representation of the temperature dependence of the magnetization of
the opposing sublattices in an antiferromagnetic material, with variation of the inverse susceptibility
(1/x); schematic representation of antiferromagnetism, with examples of antiferromagnetic

materials. [Adapted from C. M. Hurd, Contemp. Phys., 23, 482 (1982), with permission from
Taylor & Francis, Bristol, PA.]
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Figure 1.11 Temperature dependence of the magnetization M of a ferrimagnetic material, and of
the inverse susceptibility (1/x); also, schematic representation of ferrimagnetism, with examples of
ferrimagnetic materials. [Adapted from C. M. Hurd, Contemp. Phys., 23, 483 (1982), with
permission from Taylor & Francis, Bristol, PA.]

this type of itinerant paramagnetism is characterized by strong interactions
between the electrons, but not sufficiently strong to produce spontancous
magnetic order—aligned moments may arise in limited regions, and are called
localized spin fluctuations, or paramagnons.

8. Superparamagnetism. This is observed in small single-domain particles.
In this type of magnetism the magnetic moments of the particles behave in a way
analogous to a paramagnetic system, with total moment several orders of

H H H X
& > ‘ P
(@) (b) (©

Figure 1.12 Schematic description of metamagnetism. The magnetic moments change from
configurations a to b and finally ¢, aligning in parallel, as the external field is increased.
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Figure 1.13 Curve of magnetization versus magnetic field of a superparamagnet, showing the
absence of hysteresis; the probability of turning the magnetic moment is C x exp(—AE/kT),
where AE is an activation energy. [Adapted from C. M. Hurd, Contemp. Phys., 23, 486 (1982), with
permission from Taylor & Francis, Bristol, PA.]

magnitude larger than those of the individual atoms (therefore its name). The
magnetic behavior is well described by the classical expression of Langevin (see
Chapter 2); the curves of magnetization versus B/T are independent of tem-
perature. The moments of each of these particles may point along different
directions, defined by the crystal field (Fig. 1.13). Below a given temperature
(called the blocking temperature), the changes in direction, which are due to
thermal activation, occur in timescales longer than the observation time, causing
the moments to appear frozen.

9. Superferromagnetism. A system of small particles that orders mag-
netically exhibits this type of magnetism (Merup 1983).

10. Canted Magnetism. A type of magnetic order containing different and
noncollinear magnetic moments

11. Speromagnetism. The ordered magnetic materials can also be spero-
magnets, in which the magnetic moments point along random directions
(Fig. 1.14).

12. Asperomagnetism. In this type of magnetism the magnetic moments are
distributed around a preferred direction.

13. Sperimagnetism. Magnetism in which there is more than one magnetic
species, with the moments of at least one of the species pointing along a defined
direction.

14. Spin Glasses and Mictomagnetism. Types of magnetism in which the
magnetic moments “freeze” below a certain temperature 7y, pointing in random
directions (as in a speromagnet). In spin glasses there is no correlation between
neighbor moments. In mictomagnetic (micto = mixed) substances (or cluster
glasses), there is short range correlation among the moments, with regions of
resulting nonzero magnetization. One example of spin glass is given by a
dilute solution of Mn in a Cu matrix, and the magnetic behavior is schematized
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Figure 1.14 Dependence of the susceptibility x on the temperature of a speromagnet, exhibiting
a characteristic cusp, and the dependence of the reduced magnetization on magnetic field H;
schematic representation and examples of a material that presents speromagnetism—many spin
glasses order in this way at low temperature. [Adapted from C. M. Hurd, Contemp. Phys., 23, 487
(1982), with permission from Taylor & Francis, Bristol, PA.]

in Fig. 1.14. Spin glasses are formed when there is either spatial randomness, or
randomness in the interaction between neighbors, combined with “frustration”,
which means the impossibility of satisfying the type of coupling “demanded” by
each neighbor (e.g., parallel, or antiparallel) (e.g., Mydosh 1996).

There are several ways of dividing materials into classes, according to
their magnetic properties: (1) in relation to the magnitude and orientation of
the permanent magnetic moments—ferromagnets, ferrimagnets, and heli-
magnets (those in which the tip of the magnetization vector follows a helix);
(2) according to the degree of mobility of the electrons responsible for
the magnetism—Ilocalized and itinerant; and (3) according to the value of
the coercive field (reversed magnetic field required to cancel the
magnetization in the M—H curve)—magnetically soft and hard (Fig. 1.15)
(see Chapter 5).

This latter form of classification (3) is the most important in terms of the
practical applications of magnetic materials. The hard magnetic materials (as
NdFeB, e.g.) are employed in the fabrication of permanent magnets. The
magnetically soft materials, like Permalloy, are used as magnetic shields,
inductors, and transformer cores. The coercive field varies from about
1 Am™! in Permalloy, to 10° Am™' in NdFeB (see Tables 5.V and 5.VII).
Materials used as magnetic recording media (e.g., Cr,O; and Fe,O3) present
intermediate values of magnetic hardness (see Table 5.VI).

The materials that present itinerant magnetism can still be subdivided
according to the degree of filling of the conduction band, into strong
itinerant magnets (only one magnetic subband partially filled, e.g., Ni) or
weak (both sub-bands partially filled, ¢.g., Fe) (see Section 4.3 and Fig. 4.9).
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SOFT INTERMEDIATE HARD
MAGNETIC MAGNETIC MAGNETIC
MATERIALS MATERIALS MATERIALS
(Recording materials)
low-carbon steels alnico
iron-silicon alloys y-Fe,0, SmCo,
irpn-cqbalt alloys Cro, Sm (CoCuFelr),
nickel-iron alloys Co-y-Fe,0, Nd,Fe,,B
amorphous barium ferrite R.Fe..N
nanocrystalline h2 q }7 3't
soft ferrites ard ferrites

H<10° Am’ He>10" Am”

Figure 1.15 Types of magnetic materials with technological applications and some examples,
with range of coercivities. The examples of intermediate magnetic materials are taken from
materials used in magnetic recording {(see Chapter 5).

Other systems present diamagnetic behavior at low temperature and behave
as paramagnets at high temperature; they are said to present the induced
paramagnetism of Van Vleck.

In order to classify a sample into one of these categories, the first properties
usually studied are the shape of the magnetization curve, the dependence of the
magnetization on an external applied magnetic field, the variation of the specific
heat with temperature, and so on. In the last decades these studies have been
supplemented with analysis employing local techniques, specifically, techniques
using as probes atomic nuclei, muons and positrons. These experimental
techniques include Mgssbauer spectroscopy, nuclear magnetic resonance
(NMR), angular correlations, muon spin rotation, and positron annihilation.
The probes measure the magnetic and electrostatic interactions with the nuclei
and with the electrons.

The technique of neutron diffraction allows the study of the spatial distribu-
tion, direction, and magnitude of the magnetic moments in condensed matter. In
the inelastic scattering of neutrons, magnetic excitations (magnons) are created
and annihilated, and using this technique, the spectrum of these excitations may
be obtained.

The presence of magnetic order affects several properties of the materials;
including electrical transport properties, elastic properties, and optical
properties, among others.
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Figure 1.16 Temperature dependence of the spontanecus magnetization of metallic nickel
(circles). The continuous curve is a Brillouin function for J = % (see Sections 2.3 and 2.6) [Weiss
and Forrer (1926)].

1.4 MAGNETIC PROPERTIES OF SOME MAGNETIC MATERIALS

The magnetic properties of matter are affected by variables that can be
controlled experimentally, such as the temperature, pressure, and concentration
of the different phases; the presence of defects; the intensity of applied magnetic
fields; the degree of crystallinity; and the dimensionality. As an example of the
temperature dependence of a magnetic property, we may show the variation of
the magnetization of Ni with temperature (Fig. 1.16).

Pressure affects the temperature of magnetic order of magnetic materials, as can
be seen, for example, in iron (Fig. 1.17). The variation of the magnetic moment per
atom in alloys formed with the 3d transition elements exemplifies the importance of
the concentration of components for the magnetic properties; the curve of magnetic
moment versus number of conduction electrons per atom (a quantity related to the
concentration) is known as the Slater— Pauling curve (Fig. 1.18).

The dimensionality of a sample, namely, its shape either as a solid body, a thin
film, or a linear chain of atoms, affects its magnetic properties. This can be seen
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Figure 1.17 Variation of the magnetic ordering temperature [Curie temperature (T¢)] of iron, as a
function of pressure. [Reprinted from Landolt-Bérnstein, Magnetic Properties of 3d Elements, New
Series I1l/19a, Springer-Verlag, New York, 1986, p. 39, with permission.]

from the variation of magnetic ordering temperature versus thickness in ultra-
thin metallic films (Fig. 1.19).

1.5 PERMANENT MAGNETS

One very important class of magnetic materials is formed of the materials
employed in the fabrication of permanent magnets. In antiquity, the only
known permanent magnets were naturally occurring fragments of magnetite
(Fe;04), but nowadays there exists a wide variety of permanent magnet materials.
The first artificial magnets were made of iron alloys, such as iron carbon.
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Figure 1.18 Dependence of the spontaneous magnetic moment of binary alloys of elements of
the 3d series, as a function of electronic concentration, specifically of the number of 3d plus 4s
electrons of the respective free atoms; this is known as the Slater—Pauling curve.

The utility of magnets derives from the possibility of maintaining a magnetic
field in their vicinity, stable with time, and with no expense of energy. For
economical and practical reasons, it is desirable to have magnets with the
smallest possible dimensions that generate a given induction B. For a given
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Figure 1.19 Ratios of magnetic ordering temperature (Curie temperature) of ultrathin metallic films
to T of the corresponding bulk metals, as a function of the thickness, measured in numbers of atomic
monolayers. [Reprinted from U. Gradman, in Handbook of Magnetic Materials, K. H. J. Buschow, Ed.,
North-Holland, Amsterdam, 1993, p. 36, with permission from Elsevier North-Holland.]
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Figure 1.20 Evolution of the materials employed in the construction of permanent magnets;
variation of the value of the energy product (BH) with time (see Chapter 5). [Reprinted from
J. Evetts, Ed., Concise Encyclopedia of Magnetic and Superconducting Materials, Pergamon,
London, 1992, p. xx, with permission from Elsevier Science.]

magnet size, the quantity that must be maximized is the energy product (BH ) yax,
the maximum product of the magnetic induction by the field H in the second
quadrant of the B—H curve (this will be discussed in more detail in Chapter 5)
[see Eq. (1.17)]. Generally, the larger the energy product, the more appropriate is
the material for use in permanent magnets.

Materials used in permanent magnets must in general possess: (1) high
value of the magnetization M, (2) high uniaxial anisotropy, (3) high magnetic
ordering temperature; these are usually intrinsic properties. Other necessary



24 INTRODUCTION

characteristics are a large value of the coercive force or of the coercivity, and a
magnetization that is not affected by external magnetic fields. These properties
depend on the microstructure, specifically, on the grain size, the presence of
impurities, and other factors. Some of the most promising alloys for the use as
permanent magnets (Fig. 1.20) are those associating rare earths—responsible for
high anisotropy energies, to d transition metals—that give rise to elevated
magnetic ordering temperatures.
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EXERCISES

1.1 Coercive Force of a Particle. Consider a particle of a uniaxial ferro-
magnetic single domain. Let H be an applied field and Uy = K sin’(6) is the
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anisotropy energy, with 6 the angle between the direction of the applied
field and the magnetization M. Write the total energy of the particle and
show that the reverse field along the magnetization axis required to invert
M s given by H = 2K/ M,.

Magnetic Moment of a Sample. The magnetic moment of a sample with
magnetization M may be written as

n= /M(r)dv

We may define two quantities related to M, the magnetic pole density,
Pm=—V -M(r) and the superficial density of magnetic poles, o, =
M(r) - n, where n is the unit vector normal to the surface of the sample.
From the vector expression

V- (fA) = (Vf)-A+fV-A

where f is a scalar function and A a vector function, show that

uz/rpm dv+%ram da
v s

where S is the limiting surface of the sample of volume V.

Energy of a Magnetized Sphere. Compute the magnetic self-energy of a
sphere with saturation magnetization M, and radius R. Use D = % for the
demagnetizing factor of the sphere (SI).

Magnetic Field inside a Sphere. Compute the values of H and B inside a
homogeneous sphere of permeability 1 > 0 placed in a uniform magnetic
field of intensity H = Hi (Figs 1.1 and 1.2). Do H and B inside the sphere
change in the same way, relative to their values in vacuum?






ATOMIC MAGNETIC
MOMENTS

The magnetic moments carried by the atoms are related to the angular momenta
of their unpaired electrons. There are two contributions to the electronic angular
momenta: an orbital contribution and a spin contribution.

The orbital term of the atomic magnetic moment can be derived by making an
analogy of the electronic orbit with an electrical circuit. An electric current /
flowing through a circular coil of area 4 has an associated magnetic dipole
moment g =TIA [from Eq. (1.2)], where A = 4 and i is the unit normal to the
plane of the orbit. We may thus obtain the magnitude x of the magnetic moment
associated with the motion of one electron of charge —e, moving in a circular
orbit with angular frequency w:

2 2
—ewTnr —ewr
= It =0 = 2.1
p=Inr = 5 (2.1

where 7 is the radius of the orbit.
The magnitude of the orbital angular momentum J = r x m,v of this electron
is

J = mowr? (2.2)

where m, is the electron mass, and therefore the magnetic orbital moment of the
electron is

—e
2m,

p==—1J (2.3)

27
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Since the component of the orbital angular momentum of the electron in a
given direction (let us choose the z direction) is quantized, taking values %, 24, 34,
and so on, the smallest value of J, is J, =% (4 is very small, equal to
1.0546 x 107** J 5). The corresponding magnetic moment is p, = —eh/2m,.

The quantity efi/2m, is called the Bohr magneton (ug), and its value, in SI
units, is 9.27 x 1072 J T! (or 9.27 x 107! erg G~ in the CGS system):

eh

2m,

Hp = (24)

We will, from now on, express J in units of 7; Eq. (2.3) is then written
w=(—e/2m,)hJ.

Besides this orbital momentum, the electron has also an intrinsic angular
momentum, or spin. The spin has an associated magnetic moment, in the same
way as the orbital momentum, but with a proportionality constant twice as large.
We may write

- for pure orbital angular momentum
p=~hJ 0 (2.5)
v =— for pure spin angular momentum
e
where v is the gyromagnetic ratio (or magnetogyric ratio), measured ins~' T';
for electron orbital motion, v = —8.7941 x 10" 7! T°!.
This can also be written

=1 re orbital entum
= —gMBJ{ g pure o momentu (2.6)

g =2 pure spin momentum

in terms of g, the electron g-factor (a more accurate value of g for spin angular
momentum is g = 2.0023, but it is normally taken as equal to 2).

2.1 DIAMAGNETISM

The application of an external magnetic field to an electrical circuit induces in it a
current that is opposed to the original current, an effect equivalent to Lenz’s law;
this is also observed for an electron that moves in an atomic orbit. The induced
current decreases the orbital magnetic moment; since this moment decreases
with increasing field, the differential susceptibility, or magnetic response
(dM /dH), is negative. This phenomenon is called diamagnetism.

We can derive an approximate expression for the diamagnetic volume suscepti-
bility by writing the induced magnetic moment of one electron (from Eq. (2.1)):

2
Ap= _iz“’p_ (2.7)



ELECTRONS IN ATOMS 29

where Aw is the angular frequency of precession induced by the external field,
and p is the mean square radius of the projection of the electron orbit onto the
plane perpendicular to the field Bk:

P =x4)? (2.8)

Assuming that with the applied field the radius of the electron orbit remains the

same, the variation in the force acting on the electron is the Lorentz force —ewpB:

A(mgw’p) = mA(W)p = —ewp (2.9)

Assuming that the fractional change in frequency is small, the decrease in
frequency is given by

_eB

Aw:wL =
m,

(2.10)
This frequency is the Larmor frequency; substituting w; into the expression of
1, we can obtain the volume diamagnetic susceptibility:

_oM _ OM _ 9(nAu)
X=%m Mg =M 5

(2.11)

where 1 is the vacuum magnetic permeability and # is the number of atoms per
unit volume. Since r* = x? + y? + 22, and for a spherically symmetric charge
distribution x* = y? = 7%, it results that p* =3 r%.

Therefore, the atomic diamagnetic susceptibility is obtained summing over Z
electrons, where Z is the atomic number:

4 -
X = o - Z: r? (2.12)

Using average values of 2 ~ 107 m% n~5x 10® m™>, and taking an
atomic number Z = 10, we obtain for the diamagnetic volume susceptibility
x~ —107°, Expression (2.12) is sometimes referred to as the Larmor diamagnetic
susceptibility.

There is another contribution to diamagnetism, observed in the metals, that is
associated with the orbit of the conduction electrons under the action of external
magnetic fields — it is the Landau diamagnetic susceptibility, and its magnitude is
one-third that of the Pauli susceptibility (defined in Chapter 4).

2.2 ELECTRONS IN ATOMS
The energy levels E, of an atom are obtained from the Schrédinger equation:

HV = E, U (2.13)
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where H is the hamiltonian of the one particle system, built from the classical
expression

H="t—4V (2.14)

substituting the components of the momentum p by —i#id/0x; to obtain the
corresponding operators; V' is the potential in which the electron moves. The
Schrédinger equation takes the form

hZ 82 82 62

The potential energy of an electron near a nucleus of charge e (case of the
hydrogen atom) is given by

2
TN 21

If m, is the electron mass and m,, the proton mass, the Schrédinger equation is
written, in terms of the reduced mass m, = m,m,/(m, + m,), as follows:
2

2 _
5~ VAU (E - V)T =0 (2.17)

r

Changing to spherical coordinates, adequate to the symmetry of the problem,
and assuming that the wavefunction is the product of a radial function and two
angular functions

T = R(r)O()3(¢) (2.18)

we obtain three independent differential equations, with solutions of the angular
parts that are the Legendre polynomials P;"(cos ) and @ = C exp(im¢), with [
and m integers.

The solution of the radial part gives an exponential decay exp(—zr/a)
modulated by a function that has zeros (for / # 0). From this it also results the
expression for the energy

2 4
—e'm, 1
E =—"— 2.19
" 2 n? ( )

with 7 an mteger. A set of electrons having the same » constitute a shell.
In conclusion, the solution involves the following numbers:
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1. Principal Quantum Number n. This number essentially determines the
energy of the shell. The shells are traditionally denoted K, L, M, N, and so
onforn=1,2,3,4....

2. Orbital Quantum Number [. Determines the orbital angular momentum of
the electron, whose magnitude is given by

I(1+ 1)k (2.20)

The number /is an integer and may have values0,1,2,...,n — 1; the electrons
are then called s, p, d, f, and so on. In the relativistic description of the atom,
the energy of the electrons is also dependent on /.

3. Magnetic Quantum Number m;. This gives the component of the orbital
momentum along a specific direction. The number m; may be equal to
Li—-1,1-2,...,0,...,—(] — 1),—1; that is, it takes 2/ + 1 values. In the
spatial representation of the atomic quantities, known as the vector model, the
orbital momentum can point only along certain directions (Fig. 2.1) and its
projections are given by my; this is called space quantization.

4. Spin Quantum Number m,. Dirac’s theory introduces another number: the
spin quantum number, which may take values { and — 1. Therefore, the state
of the electron is characterized by four quantum numbers: #n, /, my;, and m;,.

-2

Figure 2.1 Orbital angular momentum of a 3d electron (/ = 2), and the value of its projections
along a direction z, showing space quantization.
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The electrons have magnetic moments associated with their components of
angular momentum. Thus, corresponding to their orbital momentum, there is a
magnetic moment [from Eqgs. (2.5) and (2.20)] of magnitude:

| = = /1l + Dh (2.21)

2m,

and the component of the magnetic orbital moment ,ul in a direction defined by
an applied magnetic field (assumed to be parallel to the z axis) is

I e
|:U’Zl_2m

myh (2.22)

e

The magnetic moment corresponding to the spin angular momentum is

e
@] = 2—myh 2.23
| o, (2.23)

which differs from the value of the orbital magnetic moment only by the
factor 2.

The orbital and spin momenta of an electron interact with each other, as well
as with the momenta of different electrons of the same atom. The interactions
can be described through the scalar products of the angular momentum
operators (see Chapter 3). Considering the interactions between two electrons
labeled i and j of the same atom described by

a,-je,- . Sj
C

iSi" S

a hierarchy is observed among the intensities of these interactions: the coupling
parameters obey the relations
by > a;;, a,~j
cij > a;, aij
This leads to the coupling of spins and orbital momenta of different electrons,
forming the total spin angular momentum (S) and the total orbital momentum
(L). This is the most common angular momentum coupling, called LS coupling,

or Russell-Saunders coupling. The spins couple to form the total spin S and the
orbital momenta couple to form L:

S,~~—>S

£i~—)L



ELECTRONS IN ATOMS 33

In heavy atoms there is a strong coupling between the momenta /; and s; of
each electron, leading to the total angular momentum per electron j;. This type of
coupling is called jj coupling. In LS coupling, a pair of values L, S characterize a
term, denoted by BSHly where X =S, P, D, ..., depending on the value of L.

The total spin and orbital momenta interact through the atomic spin-orbit
interaction; this is described by the equation

W;=AL-S (2.24)
L and S combine to form the total angular momentum J
L+S—1J (2.25)

and the corresponding quantum number is J. In LS coupling an atomic level is
characterized by a set L, S, and J. J may take the values

J=|L-S|, |L-S+1]|-|L+S—1], |L+S]| (2.26)

and the levels defined by these values of J are called muitiplets. The projection of
J along an arbitrary direction is quantized, and the corresponding quantum
number is M, which may take the values

M;=J,J—1,--,~J+1,-J (2.27)

An atomic state is defined by asetof L, S, J,and M, orby L, S,J, M, and M.
The maximum values of L and S'are given by > /;and 3 s;, but in each atom, the
ground-state values of L and .S follow empirical rules known as Hund’s rules:

1. The combination of s; that results in the smallest energy, and therefore is the
most stable configuration, is that for which the quantity 2.5 + 1 is maximum.

2. When the first rule is satisfied, there are several possible values of L (for the
same value of 25 + 1); the most stable is the one that makes L maximum.

These values define the ground-state atomic level.
Examples of the quantum numbers for the electrons in two transition ions are
given below:

1. Co®*(3d") ion: n=3,1=2

1
2
ny 2

2. G4 ion: n=4,1=3

moy b —sep
m 3210 -1 22 33 —~L=0
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The origin of Hund’s rules is Pauli’s principle, which forbids two electrons to
have the same quantum numbers. The electrons of parallel spin avoid each other,
and this reduces the Coulomb repulsion between them. This makes the spins
couple in parallel, leading to a maximum value of S in the ground state.

When the spin—orbit coupling constant A [Eq. (2.24)] is positive (which is the
case when the shell is less than half full), the minimum energy configuration is
obtained for L and S antiparallel, that is, for / = L — S. For a shell more than
half full, the opposite is true and J = L + S.

The 3d subshell of Co®" contains 7 of the 10 electrons that it may accom-
modate; the subshell is more than half full, and therefore the ground state is
characterized by the quantum number J = L + S =3 (Fig. 2.2).

The coupling between the angular momenta L and S and between the
associated magnetic moments p; and g is represented in Fig. 2.3. The orbital
and spin magnetic moments

pr = —pgL (2.28)
Hs = —24pS (2.29)
add vectorially to form the total magnetic moment g. The total magnetic

moment p has a component g, along J, and a component g’ that precesses
around J and is not effective (Fig. 2.3):

p=p+ (2.30)
The magnitude of the part parallel to J may be obtained from Fig. 2.3:

L-J S-J

| pr |= —MBm—zﬂBm (2.31)

From J = L + S it follows
L-J=1(+1*- 5% (2.32)
S I=L+8 -1 (2.33)

and therefore, substituting

| I__@3.12+SZ—L2___@3J(J+1)+S(S+1)—L(L+1)
MIETTT 2 T+ 1)

(2.34)

writing

wy = —gupd (2.35)
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and thus

| 1y |= gupv/J(J +1) (2.36)

it follows that g is given by

3T AD+S(S+1) - LL+1)
&= 27T+ 1) (2.37)

or

JJ+1)+S(S+1)— L(L+1)
27T +1)

g=1+ (2.38)

This quantity is known as the Landé g-factor.

Although we have treated so far L, S, J and p as vectors, they are in
fact quantum mechanical operators. Therefore, for example, the measured
total angular momentum is the expectation value (J) = ({J,M|J|J, M) =
[ #54I®7ar dv. The expectation value of the magnetic moment () is parallel
to (J), as indicated above, since {1} = {ps;). The expectation values of p and J
are also connected through the g-factor:

(n) = —gup(J) (2.39)

The multiplets of an atom under the effect of a magnetic field are split into
sublevels characterized by the projection M of the total angular momentum in
the z direction. The magnetic energy is given by'

Ey, = —p;-B=gupM;B (2.40)

In the presence of a magnetic induction of 1 tesla (T) (10,000 G) this energy is of
the order of 1072 J~ 107 ¢V ~ 1 cm™!. The thermal energy kT at room
temperature is of the order of % =0.025 eV, or 200 cm ™.

It was shown in Fig. 2.2 how the atoms in the sublevels characterized by
different M, previously degenerate, possess different energies in the magnetic
field.

The probability of occupation of the sublevels, or the proportion of atoms of
momentum M, depends on the temperature, and is given by a Boltzmann
distribution:

PUy) — P Eu, /KT)

= S, exp(—Eyy, /KT (241)

' The conditions of validity of this expression are discussed in Ashcroft and Mermin (1976).
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Figure 2.2 Energy levels of the free ion Co®" (electron configuration 3d”). [Adapted from
J. Crangle, Solid State Magnetism, Van Nostrand Rheinhold, New York, 1991, p. 21.]

We can in general consider the population of the sublevels A, corresponding
to the lowest J multiplet, since the next multiplet is usually too high in energy
compared to the thermal energy kT; every atom is in the ground state
characterized by the quantum number of the total angular momentum J. In
the example of the Co®* ion (Fig. 2.2) J = L + S is the lowest multiplet, and the
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Figure 2.3 Vector representation of the angular momenta L, S, and J, and of their corresponding
dipole magnetic moments, u; pg, and p.

next one, J =L+ S—1,isat 1.7x 107 J = 1.0 x 10™"' ¢V = 840 cm™ ', cor-
responding to a separation of 1200 K. In this case, only the lowest multiplet will
be populated at room temperature.

The periodic table of elements (Table 2.1) brings to the light the periodicity of
the physical and chemical properties of the elements as a function of the atomic
number Z. This regularity arises from the way the electronic configurations vary
with the atomic number, that is, the form in which the electronic states defined by
the quantum numbers n and / are filled. Figure 2.4 shows a graph of the variation
of the atomic radius as a function of the atomic number Z; this radius variesin a
periodic way, showing minima at values of Z corresponding to the noble gases.

The electronic structure of each element, with very few exceptions, is identical
to the structure of the preceding element, with the addition of one electron.

The energy of the electron, as a rule, increases with the quantum number #,
but it is also dependent on the orbital quantum number /; the ground states are
those states of minimum energy. The electrons with small / stay a longer time
near the nucleus, and therefore their energy is lower. In this way, the filling order
of the subshells [defined by the pair (n, /)], as Z increases, beginning with hydrogen,
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26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb

(Ar)(4s)’(3d)° 7.870
(Ar)(4s)*(3d)’ 7.86
(Ar)(@s)>(3d)® 7.635
(Ar)(4s)' 3ad)'° 7.726
(Ar)(4s)° )" 9.394
(Ar)(4s)’(3d)'°(4p)" 5.999
(Ar)(4s)*(3d)'°(4p)® 7.899
(Ar)(4s)°(3d)'°(4p)° 9.81
(AD(As)>(3d)'°(4p)* 9.752
(Ar)(4s)’(3d)'°(4p)y’ 11.814
(Ar)(4s)°(3d)'*(4p)® 13.999
(Kr)(5s)! 4.177
(Kr)(5s) 5.695
(Kr)(55)*(4d)’ 6.38
(Kr)(55)*(4d)* 6.84
(Kr)(5s5)' (4d)* 6.88
(Kr)(5s)' (4d)° 7.099
(Kr)(55)*(4dy’ 7.28
(Kr)(59)' (4dy’ 7.37
(Kr)(5s)' (4d)® 7.46
(Kr)(4d)"® 8.34
(Kr)(5s)! (4d)"° 7.576
(Kr)(55)%(4d)'° 8.993
(KD)(59)*(4d)'°(5p)’ 5.786
(Kr)(55)2(4d)'°(5p)° 7.344
(Kr)(55)* (4d)'%(5p)° 8.641

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
Fr
Ra
Ac
Th
Pa
U
Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lr

(Xe)(63)*(4)*(5d)
(Xe)(65)' (49 "*(5d)°
(Xe)(63)' (49" (5d)"°
(Xe)(65)° (4N (5d)"°
(Xe)(6s)°(41)"“(5d)'°(6p)’
(Xe)(65)°(41*(5d)'°(6p)*
(Xe)(65)°(4N"“(54)"°(6p)’
(Xe)(65)° (49" (50)'*(6p)*
(Xe)(65)°(40)"*(5d)'*(6p)°
(Xe)(6s) (40" (54)'°(6p)°
(Rn)(7s)"

(Rn)(7s)?

(Rn)(7s)*(6d)’
(Rn)(75)*(6d)*
(Rn)(75)*(5)*(6d)'
(Rn)(7s)*(5/)* (6d)'
(Rn)(7s)*(5)* (6a)"
(Rn)(7s)*(50)°
(Rn)(7s)*(5f)!
(Rn)(7s)*(5f) (6d)'
(Rn)(75)*(50)* (6d)'
(Rn)(7s)*(5/)°(6d)"
(Rn)(7s)*(5H"
(Rn)(7s)*(5/)"
(Rn)(7s)*(5H"
(Rn)(7s)°(3N"*
(Rn)(7s)*(50)"*(6a)"

9.1
9.0
9.225
10.437
6.108
7416
7.289
8.42

10.748

5.279

Source: Adapted from R. A. Meyers, Ed., Encyclopedia of Physical Science and Technology, Vol. 2, Academic Press, Orlando, FL
(1987). The electronic configuration for Bk and CF taken from Landolt-B6rnstein, Magnetic Properties of Metals, New Series ITI}
1911, Springer-Verlag, New York (1991).
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Period 2Period 3 Period 4 Period 5 Period 6 Period 7
25 Cs Fr
Rb
K
z 20+
- . Na
E Li
g 1.5
°Q
§
= 1.0+ n
< Xe R
Kr
H Ar
o.sN
He Ne
10 18 36 54 86

Atomic number

Figure 2.4 Variation of the atomic radius rof the elements versus atomic number Z, showing the
periodicity of r(Z). Note the minima at the radii of the noble gases. [Reprinted from R. A. Meyers,
Ed., Encyclopedia of Physical Science and Technology, Vol. 10, Academic Press, Orlando, FL,
1987, p. 265.]

is: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, and 6p. Therefore, the energy of
an electron may be lower in the next (n + 1) orbit, with an orbital number / — 1
lower than that it would have by entering the n orbit. The (n,/) subshell thus
remains incomplete.

The elements that present these incomplete shells are called transition elements
and belong to the groups: 3d (iron group), 4d (palladium group), 5d (platinum
group), 4f (lanthanides), and 5f (actinides). As opposed to what occurs with the
closed shells, where the sum of the projections of angular momenta m; and m;, is
zero, the incomplete shells have nonzero angular momentum, and as a conse-
quence, nonzero magnetic moment. For this reason, the elements important for
magnetism are the transition elements. An incomplete outer subshell (e.g., 4s),
however, does not lead to magnetic effects, since the unpaired electron partici-
pates in the chemical bond.

The metallic elements of the Periodic Table may be classified as transition
metals (already mentioned), as noble metals [those that have just filled the d
subshell (copper, silver, and gold)], and as normal metals, like aluminum, that
are formed by adding one electron to the outer shell (4s, 5s, etc).

The rare earths are defined as the set of elements of atomic number between 57
(La) and 71 (Lu), (i.c., the lanthanides) plus the elements Sc and Y.

2.3 MAGNETIC MOMENT OF AN ASSEMBLY OF ATOMS

The projection of the magnetic moment of each atom, in the direction defined by
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the magnetic field B, will be (we assume B = Bk; the z axis is parallel to (),
i.e., antiparallel to (J)):

Hy = gpusM; (2.42)

where M; maybe J,J —1,...,—(J = 1), —J.
The average magnetic moment per atom will be, at a temperature T, a sum
over the sublevels M:

(W7 =gus Z M, P(M;) (2.43)
M;

where P(M;), the probability of occupation of a sublevel characterized by M, is
as given by Eq. (2.41) (Boltzmann distribution). This is a thermal average, and
we use the notation (- - ).

The preceding expression is equal to

> M, exp(gusBM, /kT)
M

(u7)r = gus < (2.44)
E exp(gupBM, /kT)
M,

This function can be put into a more compact form. Making x = gugzJB/kT
and v =)y, exp(xM,/J) we see that

Z(MJ/J) exp(xM;/J)
(13)r = gusJ il

dv/dx
= gupJ ol (2.45)
>~ exp(xM,/J) v
M,

We may easily compute v, since v is the sum of the terms of a geometric
progression. Making z = exp(x/J), we obtain

v= Z M=tz 24+ ) (2.46)

(since My = —J,—J +1,---,+J).
Recalling that

n

-1

S, = ay + agx + apx’> + - -+ agx""' = Ml—) (2.47)
.

we have

sz+1 -1 ZJ+1/2 _ Z—(J+1/2)

— —
v=z P e Y (2.48)
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L2 (exp(%))lﬂ/z: exp (x + ij) (2.49)
_exp[(1 + 1/2J)x] — exp[—(1 4 1/2J)x]
v= exp(x/2J) — exp(—x/2J) (2:50)
but sinh(x) = [exp(x) — exp(—x)]/2; therefore,
_sinh(1 +1/2J)x
"~ sinh(x/2J) (251)
Computing the derivative of v, we obtain
dv _ sinh(x/2J)(1 + 1/2J)cosh[(1 + 1/2J)x]
dx [sinh(x/2J))?
_ sinh[(1 +1/2J)x](1/2J)cosh(x/2J) (2.52)
[sinh(x/2J)]* '
and from Eq. (2.45):
N dv/dx (1 4+ 1/2J)cosh[(1 + 1/2J)x]
(17)r = gus/ = guBJ[ Sh{(1 5 1/2J)x]
(1/2J)cosh(x/2J)
~ sinh(x/2J) ] (2:33)

or

(ir = gMBJKl + %) coth [(1 + %) x] - %coth (%ﬂ (2.54)

Finally, we obtain for the projection of the average magnetic moment in the z
direction, as a function of the parameter x:

(/J/;)T = gupJB;(x) (2.55)
where

. grp/B
kT

(2.56)
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and B,(x) is the Brillouin function, defined by

B,(x) = (1 + %) {coth(l + 51j>x] - %coth (%) (2.57)

In the special case J = 1,

B, (x) = 2coth(2x) — coth(x) = tanh(x) (2.58)

We can see in Fig. 2.5 the dependence of B;(x) on x and J. Experimental
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Figure2.5 Plot of the Brillouin function B,(x) as afunction of x = gugJB/kT,forJ =
J =o00.
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W (Bohr magnetons)

] ] I |

0 1 2 3 4
B/T (TK™)

Figure 2.6 Magnetic moment per ion in salts containing the ions Gd®"(J = 1), Fe**(J =9)
and Cr*(J = g) measured at different temperatures, versus B/ T = kx/gugdJ. The curves are the
Brillouin functions B, (x) for the corresponding values of J = S. [Reprinted from W. E. Henry, Phys.
Rev. 88, 559 (1952).]

results for the magnetization of paramagnetic salts are presented in Fig. 2.6
(Henry 1952). We note the good agreement between the measurements with salts
of Gd, Cr, and Fe, and the Brillouin functions for the corresponding values of J.
The figure shows the magnetic moments described by |{u7)+| = gusJB;, and
therefore, the curves tend to the saturation value gug/. Note also that the
experimental points fall on the curves independently of the temperature of the
measurements, depending only on the ratio B/T. The measurements were made
atT=13K, T7T=20K, T=30K,and T =4.2K.
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In the experiments with paramagnetic samples, with values of B and T

attained in the most common experimental conditions, the values of
x = gugJB/kT are small. For small argument, coth(x) is equal to

T+ (2.59)

1
COth(X) = ; + §

Substituting into B, (x) [Eq. (2.57)]:

Bylx) <1 +%>{ [(1 n 11/2J)x+ . +31/2J)XH“% F?JjLExi] :JTJ;IX

(2.60)

Therefore, in this limit (small x), the magnetization is proportional to x: this is
visible through the initial linearity in the graph of B;(x) (Fig. 2.5).

From this result we may determine the susceptibility, that is, the rate of
change M /O H in this region (small x). The volume susceptibility, x, is obtained
from the knowledge that in a unit volume we have n atoms; the total magnetic
moment per unit volume (= M) is therefore

gup/B(J +1) _ngup(J+1)B

M = n{uz)r = ngupB;(x) ~ ngugJ Y T (2.61)
The susceptibility is
R 2.62)
or
- pong’upl(J+1) _C (2.63)

3kT T

a relation known as Curie law, obeyed by the susceptibility of many substances;
C, the Curie constant, is given by

o _ g’ upl(J +1)

o (2.64)

When the separation between the multiplets is not much larger than kT,
deviations from the Curie law are observed. The constant C contains g°J(J + 1),
which is the square of the effective paramagnetic moment peg:

Peit =8V J(J + 1) (2.65)



46 ATOMIC MAGNETIC MOMENTS

12

10+

Pess (BOhr magnetons)
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Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

4f electron number of ion

Figure 2.7 Experimental values of the effective paramagnetic moment py; for rare earths, in the
oxides of formula R,O; (open circles) and in the metals (full circles), as a function of the number of
4felectrons. The curve corresponds to the values computed with Eq. (2.65).

The values of the moments p.g of the rare earths determined experimentally
are in good agreement with the p. computed with Eq. (2.65). Figure 2.7 shows
that the moments given by g+/J(J + 1) coincide with those obtained experi-
mentally, for the metallic rare earths and for the R,0O; oxides. The fractional
deviations are larger in the cases of Euand Sm; the separation between the lowest
states and the states immediately above is smaller among all the rare earths
in the case of Eu** (350 cm™') and Sm** (1000 cm™") (Table 2.II). This is the
explanation for the observed disagreements. To compute the magnetic moment
of the ions that have a separation between the multiplets comparable to kT, we
have to take into account the occupation of the higher multiplets, and of their
magnetic sublevels.

If we compare the effective paramagnetic moments of the transition elements
of the d series, we will find a large disagreement between the computed effective
moments p.gr and the measured moments. The agreement may be recovered if we
write S instead of J in the expression of pg. This is an evidence of the importance
of the interaction of these ions with the electrostatic crystalline field (see
Section 2.7). This interaction, in these ions, is larger than the interaction AS - L
(spin—orbit). The smaller extension of the 4f shell leads to a partial shielding of
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Table 2.l Properties of the 3" rare earth ions?

Z 4" 3'Ion L S J g (g-1JJ+1D)  Aylem™)
57 0 La c* 00 0 0 0

58 1 Ce 3 1 3 ¢ 0.18 2200
59 2 Pr 5 1 4 4 0.80 2150
60 3 Nd 6 3 3 & 1.84 1900
61 4 Pm 6 2 4 2 3.20 1600
62 5 Sm 5 3 3 2 4.46 1000
63 6 Eu 33 0 - 0 350
64 7 Gd E" 0 I 1 2 15.75 -
65 8 Tb 33 6 3 10.50 2000
66 9 Dy 5 3 % 4 7.08 3300
67 10 Ho 6 2 8 3 4.50 5200
68 11 Er 6 3 L ¢ 2.55 6500
60 12 Tm 5 1 6 1 1.17 8300"

*3H, is lower at 5900cm™ .
“In this table g is Lande’s factor and A is the spin—orbit splitting to the next J level.

Source: Reprinted from R. J. Elliott, in Magnetic Properties of Rare Earth Metals, R. J. Elliott, Ed.,
Plenum Press, London, 1972, p. 2.

this shell to the effects of the crystalline field, making the 4f electrons relatively
insensitive to the chemical bonds.

2.4 LANGEVIN PARAMAGNETISM

In the derivation of the expression of the magnetic moment of an assembly of
atoms (Section 2.3), the quantization of the angular momentum was taken into
account. If the angular momentum were not quantized, as in the classical case,
any value of p° would be allowed, and the magnetic moments could point
along any direction in relation to the direction of the external field B.

The projection of the magnetic moment along the z direction in the classical
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case is given by:
= p-k = pcos(h) (2.66)

where 6 can take any value between 0 and .
Making the average over 6, one arrives, after some algebra (Exercise 2.5) at
the expression for the z projection of the magnetic moment

()7 = nL(x) (2.67)

where x = uB/kT and L(x) is the Langevin function given by
L(x) =coth x —i (2.68)

The Langevin function L(x) is therefore the classical analog of the Brillouin
function. This function describes well the magnetization of small particles
formed of large clusters of atoms, in systems known as superparamagnetic
(Chapter 1). In superparamagnets the effective moments are very large, reaching
10° Bohr magnetons, for instance, and for this reason their magnetization is well
described by a classical model like that of Langevin (Fig. 2.8).

2.5 NUCLEAR MAGNETISM

The atomic nuclei may also have an angular momentum (J), and therefore a
magnetic moment, given, in analogy with the electronic case, by

where g is the nuclear g-factor and p is the nuclear magneton, equivalent to the
Bohr magneton, but involving the proton mass m,:

.

= 5 (2.70)

HN

Since this mass is 1836 times larger than the electron mass, the nuclear magneton
is smaller than the Bohr magneton, in the same ratio. This fact explains why the
magnetic effects associated with the nuclear magnetism are much weaker than
those due to the magnetism of the electrons. The nuclear magnetic moment is
also written in terms of the gyromagnetic ratio v = guy /% as m = ~Al.

The vectors I and J combine to form the total momentum F, and the
interaction between I and J is the hyperfine interaction (see Chapter 6).

The nuclear magnetic susceptibility is given by the Curie law:

_ pong iy I(I + 1)

c
Xn 3T T 21)
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Figure 2.8 Experimental variation of the reduced magnetization (My/M,) of superparamagnetic
ferrite particles obtained at different temperatures, versus B/ T; the continuous line is the Langevin
function. [Reprinted from J. Crangle, Solid State Magnetism, Van Nostrand Rheinhold, New York,
1991, p. 172.]

where n is the number of nuclei per unit volume. Because the ratio of the
magnitudes of the electronic and nuclear moments is so large, this susceptibility
is negligible in comparison to the electronic susceptibility. Usually, it is even
smaller than the diamagnetic susceptibility. However, at very low temperatures,
the nuclear susceptibility may be comparable to the latter.

2.6 FERROMAGNETISM

We have so far studied an assembly of atoms whose unpaired electrons, under
the action of an external field B, occupy nondegenerate energy levels; from the
unequal occupation of these states arises the existence of magnetic moments
()7

In ferromagnetic materials there is a non-zero magnetic moment (inside a
domain), even in the absence of an external field. The first explanation for this
fact, proposed by P. Weiss in 1907, is that each individual atomic moment is
oriented under the influence of all the other magnetic moments, which act
through an effective magnetic field.

To obtain the magnetization using this hypothesis, we may follow the same
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steps of the reasoning of Section 2.3, this time assuming that each ion feels,
instead of B, a field B + B,,, where B, is this effective field.

The magnetization under a field B, at temperature 7, assuming # atoms per
unit volume (number per cubic meter in the SI) is

Mpr = n(uj)r (2.72)
The effective magnetic field due to the other ions, or mean field, in the simplest

hypothesis, due to Weiss, is called the molecular field, and is proportional to the
magnetization:

Bm = )‘mMBT = /\mn<ﬂ*.zl> Tk (273)

where J,, is the molecular field constant, or molecular field coefficient.
The magnetization may be computed as in the preceding case; the moment per
atom as a function of 7 is

(u7)r = grplB;(x') (2.74)

where x' is the equivalent to x = gugJB/kT of the paramagnetic case, with the
addition of the molecular field B,,,:

' (B+ Aun{ug)r)
_ 275
x = gugJ T (2.75)
Therefore
. B+ )\, n{y5
(H7)r = 8grBIBy (g,UBJ #) (2.76)

This expression, which gives the magnetic moment (per atom) as a function of
the temperature, is more complex than in the preceding case (the paramagnetic
case), since now {u3)r is present on both sides of the equation.

Assuming initially B = 0, we have

r_ g,uBJ)\mn<:uj)T
x = T (2.77)

and

, At {15
(13)r = gnpJBy (guBJ ———lféfm) (2.78)
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Figure 2.9 Graphical solution of the system of Egs. (2.79). The straight lines are representations
of Eq. (2.79a) for the temperatures Ty, Ty, Ty, T3, and T,. The temperatures Ty, T, T3, and T, are
below T, and in these cases the system has two solutions; for temperatures above T¢, as Ty, there
is only the trivial solution (x' = 0, (5} = 0).

From (2.77), it follows that

!

SR — 2.
gt Aun/kT (2.79)

and from (2.74)

(13)T = gupJBs(x') (2.79b)

We may find the values of x" and (u17); that solve the system of equations above
(2.79) making a graph of (u7) 7 [using (2.79b)] and finding the intersections with
the straight lines that describe (2.79a), for different values of 7. This graphical
method was used by Weiss. Alternatively, we may compute (1.7} by solving self-
consistently these equations using a computer.

The graph of the two functions (Fig. 2.9) shows two intersections in the plane
(x', {47) 7); the solution x" = 0, (7)1 = 0 always exists, but of course it is of no
interest. We may note also that as we approach the solution with (¢7) tending
to zero, | d(u7)r/dx' | increases, that is, (17)7 falls more rapidly. The sponta-
neous magnetizations computed this way are shown in Fig. 2.10, under the form
of reduced magnetization Moy /My, versus reduced temperature T/ T (T is the
Curie temperature). The reduced magnetization is

Mor _ B.(x) — (wp)r  XkT

= = 2.80
My gt (gupt)nh, (2.80)
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Figure 2.10 Reduced magnetization (Myr/My,) versus reduced temperature (T/Tg) for
different values of the angular momentum J, in the Weiss mean field model.

If we make B # 0, the magnetizations may still be computed; now the
magnetization curves change shape slightly, with a tail that extends beyond
the ferromagnetic Curie temperature. One can see from Fig. 2.11 that there is a
finite magnetization above T, with B # 0.

Just below T, B;(x') is small, and may be approximated by Eq. (2.60):

s

BJ(XI) ~—3J—x (281)
Using Eq. (2.80), we have
!
J+1x,: ka" (282)
37 (gMBJ) n)‘m

which is valid for T tending to T (i.e., for a magnetization tending to zero). Thus
the Curie temperature results:

_gupnJ(J +1)

T,
¢ 3%k

(2.83)
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Figure 2.11 Reduced magnetization in the Weiss model, for different values of the applied
magnetic field.

From this relation we may compute, for a value of T determined experimen-
tally, the value of the molecular field parameter A,,. For example, in metallic
gadolinium (Fig. 2.12), T =2934K, §=7/2,L=0,g =2, atomic mass
M =157.3, and density 7.9 g/em’. With N =6.023 x 10 mol™!, up =
927 x 1072 JT7", k=1381 x 102 JK', it follows that A, =0.742 x
107 77" T2m’. The molecular field is obtained from the saturation mag-
netization My, = 2.12 x 10° Am™"; the molecular field at 7 =0K is
B, = A\uMoy = 157 T(= 1.57 x 10° G).

Table 2.1I1 gives Curie temperatures and magnetic moments per atom for
some ferromagnetic elements.

A ferromagnet above T presents no spontaneous magnetization; in other
words, it has no magnetization with B = 0. However, under the influence of an
external field, a nonzero magnetization appears, as in the case of a paramagnet.
We may measure this magnetic response through the susceptibility x = OM /0H,
this quantity may be computed within the Weiss model.
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Figure 2.12 Values of the magnetic moment per unit mass of metallic Gd, as a function of
temperature. The continuous curve is the magnetic moment given by the Weiss mean field model,
for J = 7. On the right side of the graph, measurements of the inverse of the susceptibility (1/x).
[Reprinted from J. J. Rhyne, in Magnetic Properties of Rare Earth Metals, R. J. Elliott, Ed., Plenum
Press, London, 1972, p. 132.]

The magnetization in this temperature region is small, and therefore we may
use Eq. (2.81):

J+1,
37 (2.84)

and the magnetic moment with applied field is

By(x') ~

(13)7 = guetB; (xX) = =S gup(J + 1)x’ (2.85)
substituting
B+ n{ud)r
== J— 2.86
X = glp kT ( )
we obtain
. B+ A, n{ug
iy ~ il (7 + 1) 22l ) .87)
3kT
Table 2.l Curie temperature (T¢) and magnetic moment per atom () of some
ferromagnetic elements, for different crystalline structures
Element Fe(bcce) Co(fce) Co(hcp) Ni(fcce) Gd(hcp)
Te (K) 1044 1388 1360 627.4 2934
tae at 0 K (13) 2217 1.753 1.721 0.6157 7.56

Source: Reprinted from L. J. Swartzendruber, J. Mag. Mag. Mat. 100, 573 (1991), with permission
from Elsevier North-Holland, NY.
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With C = peg’uznJ(J + 1)/3k [Eq. (2.64)] it becomes

n() T = “—i(B 4 Au(i)7) (2.88)

and it follows that

CB/ug

= 7 2.89
T~ Chu/sio (2:89)

My = ”(M?)T

Using H = B/uy we obtain the susceptibility per unit volume xy = 0Mpr/0H:

(7)) C C
= = = 2.9
X oH T—Chu/pe T —0, (2:90)

with

o — o _ &l (J +1)
re Ho a 3k

(2.91)

Equation (2.90) expresses the Curie~Weiss law, and 6, is the paramagnetic
Curie temperature. It should be noted that the paramagnetic Curie temperature
(6,) is given, in the Weiss model, by the same expression describing the Curie
temperature (T¢) [Eq. (2.83)]. However, the values for 6, and T observed
experimentally do not show, in general, this coincidence.

Therefore, the behavior of the susceptibility of a ferromagnet above the
temperature of magnetic order T is analogous to that of a paramagnetic
material, with the difference that 0, is not zero for a ferromagnet.

2.7 CRYSTAL FIELDS

The incomplete electronic shells of the transition elements with nonzero orbital
momentum (L # 0) do not have spherical symmetry. When a transition metal
atom is located in a crystal, the charges of the electrons in these shells interact
with the charges of the crystalline lattice—this is the crystal field interaction. The
crystal field (CF) interaction depends on the orientation of the charge cloud
relative to the crystal axes. The closed shells practically do not contribute to this
interaction.

The crystal field interaction represents another term that must be added to the
hamiltonian of the free ion (or atom), which already contains the electron—
nucleus Coulomb interaction (H,y), the electron—electron interaction, and the
spin—orbit interaction (H ).
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There are three regimes for the crystal field interaction, defined according to
its relative intensity:

1. Strong crystal field interaction—observed in the elements of the 44 and 54
transition series. In this case

Hcf > Hcoul > HLS (292)

2. Medium crystal field interaction—observed in the 3d series. We have here

Hcf ~ Hcoul > HLS (293)

3. Weak crystal field interaction—in the 4f series (rare earths). The inter-
actions follow the relation

Heow > His > He (2.94)

We now discuss how the crystal field problem is formulated for the rare earths,
therefore, in the limit of weak crystal field interactions.

The most immediate form of obtaining the interaction with the crystal field is
to start from the computation of the potential energy of the electronic charges g;
in the potential ¥ due to the point charges of the lattice:

N
We= Z%’V(Xnynzz‘) (2.95)

The hamiltonian of the magnetic ion, in the presence of the magnetic
interaction (with the exchange field) and of the interaction with the crystal
field, is given by

H = Hingg + He (2.96)

The matrix elements of H may be derived from the classical potential energy
of the charges [Eq. (2.95)], through the substitution x — xq5,5 — yop (the
position operators) and so on, and summing over all the N magnetic electrons.

A more practical method, the method of the operator equivalents (or
Stevens’s operators) (Stevens 1952), consists in substituting x — J,,y — J,,
and so forth, observing the appropriate commutation rules. For this purpose, the
products of x, y, and z are substituted by all possible combinations of J,, J, and
J., divided by the total number of permutations.

We may give the following as examples:

D Gz =) = (B — I+ 1)] = 0, (%) 03 (2.97)

i

Y xvi = ay ()3, + 4] (2.98)
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where «; is a numerical constant for the second-order term that depends on /; for
the fourth-order term it is 3, and for the sixth-order term, ;. These constants are
determined by direct integration, and are tabulated.

The interaction is usually written in terms of the operators O’ of order nin the
components of J; the B are numerical coefficients:

M=) _ B Oy (2.99)

nm

The operators O} are polynomials that involve the angular momentum
operators JZ,J:Z,J+ and J_. The maximum value of » in the hamiltonian is 6
for felectrons and 4 for delectrons. The presence of the different operatorsin this
expression depends on the point symmetry of the sites where the ion is located,
and on the choice of the crystal axes.

In magnetic samples, the main interaction in the hamiltonian is the magnetic
interaction. The effect of the crystal field interaction is to admix excited states to
the ground state defined by the magnetic interaction | J, M = J), leading to a
reduction in (J,). This effect is known as “quenching”; it causes a reduction in
the magnetization and in the hyperfine field acting on the nucleus of the
respective ion. One image to describe this effect is that, under the influence of
the crystal field, the orientation of the electronic orbits varies continuously with
time, and this leads, in the limit, to a null projection of the orbital moment along
any direction.

In the 3d series the attenuation takes a different form: since H, is a strong
perturbation in relation to the spin—orbit interaction, L and S decouple, and the
mean value (L) is reduced. This explains, for example, why the magnetic
moments found in the 3d series are nearer to gup(S) than to gug(J); in other
words, the measured moments relate only to the spin angular momentum.

The values of the constants ay, 87, and v;, and the expressions of the
operators (O, may be found in Hutchings (1966).

The higher the symmetry, the smaller the number of operators necessary to
write the crystal field hamiltonian. For a crystal field of cubic symmetry, only
four terms suffice:

Her = BY(OY + 50%) + BY(O? — 2109%) (2.100)

For hexagonal symmetry in the case of ideal ¢/a ratio, the hamiltonian is
written

M = BYOY + BY(0§ + Z0F) (2.101)
The form of the hamiltonian, the operators that appear in its expression, vary

depending on the choice of axes. For example, expression (2.100) was obtained
for the z axis coinciding with the (100) direction. For z || to the (111) direction,
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Table 2.IV  Crystal field parameters for some rare-earth metals (in meV)

Rare earth B B B B¢

Ho 0.024 0.0 —9.6x1077 9.2x10°°
Er —0.027 —0.7x107° 8.0x1077 —6.9x107¢
Tm —0.096 0.0 -92x107¢ 8.9x107°

Source: Reprinted from J. Jensen and A. R. Mackintosh, Rare Earth Magnetism: Structures and
Excitations, 1991, p. 114. By permission of Oxford University Press, Oxford, UK.

the cubic hamiltonian is

wIN

30(02—20ﬁ03)+%632<02 35\[06+8 ) (2.102)

The attenuation of the magnetic moment due to the crystal field may be
computed from the complete hamiltonian of the ion, containing the magnetic
term and the crystal field term [Eq. (2.96)]. The eigenvectors are obtained by
diagonalizing H, and then computing (u). For the rare earths, the computed
angular moments at 7 = 0 (McCausland and Mackenzie 1980) show the effect
of the crystal field. Examples are (1) Tb: (J,) =0.9923 J and (2) Dy: {J.) =
0.988 J.

The parameters B’ are usually determined experimentally (see Table 2.1V).
They may also be computed, but this involves a considerable degree of
uncertainty, mainly because the B parameters contain the terms ("), and the
shielding factors. The computation of the ratio between the B, however, does
not present these difficulties.

An alternative notation for the crystal field coefficients (Lea 1962) uses
a parameter x to measure the ratio between the terms of fourth and sixth
orders:

TR G (2.103)

where F(4) and F(6) are tabulated factors for the different 4fions. With O4 and
O the expressions of the operators of fourth and sixth orders of the cubic
hamiltonian [in parentheses in Eq. (2.100)], and introducing a scaling parameter
W (with dimension of energy), we have, for cubic symmetry:

He = W(}CZ‘; + (1_;();)')06> (2.104)
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EXERCISES

2.1 Larmor Frequency of one Electron. Consider one electron subject to a
Coulomb force, moving in a circular orbit around a nucleus of charge e.
Write the expression of the total force acting on the electron assuming that
a magnetic field B is applied, and show that the frequency of the electron
motion around the direction of the field is given by

. eB 2+ e? N eB
v 2m, m,r3)  2m,
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Evaluate the magnitudes of the different terms and make an approximation
to obtain the Larmor frequency.

Diamagnetic Susceptibility of Atomic Hydrogen. The ground state of the
hydrogen atom (ls) is described by the wavefunction =
(nag)~ 12 exp(—r/ay) where ay = i /m,e* = 0.529 x 10~% cm. Obtain the
expectation value of r and #* for this state, and compute the diamagnetic
susceptibility of hydrogen.

Magnetic Moment of Iron. The saturation magnetization of iron is
1.7 x 10°Am™". Assuming the density of iron is 7970 kg m ™ and Avogadro
constantis 6.025 x 10® kg™!, compute the magnetic moment per iron atom in
units of Bohr magnetons (atomic mass of iron = 56).

Néel Temperature. Consider an antiferromagnet formed of two sub-
lattices 4 and B. Let A\ 5 = Ag; = — A be the molecular field coefficients
of the two sublattices and A4, = Agp = X’ in each sublattice. Let B be an
external applied magnetic field.

(a) Write the expression of the total field acting on each sublattice, B, and
B;.

(b) Substituting the expressions obtained in the Brillouin function, make
an expansion for high temperatures and show that the magnetization in
each sublattice is given by

Cy ,
M, =—2(B-\M M
A TMO( MM + A M)
and
MB——CB (B— MM, + \N'Mp)

T
(c¢) Making C, = Cp = C, show that the Néel temperature is given by

Ty = C(A £ X') ( Suggestion: The Néel temperature is the temperature
for which M, and Mz # 0 for B=10.)

Langevin Magnetism. Derive the expression for the magnetization of an
ensemble of classical magnetic moments (Langevin function).

Relativistic Spin—Orbit Interaction. One electron with velocity v = p/m,
moving in a central force potential —V /e, feels a magnetic field equal to
B = —(po/4m)v x E, where E = —V V. Show that the interaction energy
between the electron spin and the field B may be written

_ o 1dV
Cdwmirodr

s=&()l-s
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where 1 = #r x p. The result obtained from Dirac’s relativistic equation
for the coupling constant is two times smaller than the result obtained
above.

Crystal Field and Direction of Magnetization Let the crystal field
hamiltonian be given by

Ml = BYOS = BY[3J, — J7]

where J, is the component of J along the ¢ direction of the crystal. Let z be
the direction of magnetization of the crystal (direction of (J) ). Considering
the electrostatic interaction as a perturbation on the magnetic one, show
that the expectation value of HJ; in the state | J;J) of J, is given by

(H&) = (J;J | HE | J5J) = B3 (2] — 1)Py(cos6)

where § is the angle between J, and (J) and P,(cos ) is the Legendre
polynomial of order 2. Show that if B3)0, the direction of magnetization
will be perpendicular to the ¢ axis and if B(0, M will be parallel to c.

Quenching of the Angular Momentum of a p Electron. An atom containing
a single electron in a p orbital is affected by a crystal field with octahedral
symmetry, due to six equal charges Q located along the axes x, y, and z. The
charges on the axes x and y are at the same distance r, from the center of the
atom (origin of the coordinate system) and those on the z axis are at a
distance r|.

(a) Show that the dominant term in the crystal field is given by
He = A(32> — r*) and discuss the sign of 4.

(b) Writing the p wavefunctions as p, = xf(r), p, = yf (rg and p, = zf (),
find the eigenenergies of the states in terms of 4 and (), the root mean
square radius of the p orbital.

(¢) Assume that a magnetic field is applied along the z direction. Compute
the 3 x 3 matrix of the total hamiltonian H.

(d) Evaluate the eigenstates of . In which states is the degeneracy lifted?
Which state has the angular momentum quenched by the field?






INTERACTION BETWEEN
TWO SPINS

3.1 EXCHANGE INTERACTION

In Chapter 2 we discussed the phenomenon of ferromagnetism, and its descrip-
tion within the Weiss theory, or mean field approximation. In this chapter we
discuss the interaction between two electron spins that provides the physical
basis for the onset of ferromagnetic order.

The molecular field postulated by Weiss to describe ferromagnetism remained
without physical explanation until the birth of quantum mechanics. The
magnetic fields required by the Weiss model were much larger than those
associated with the magnetic dipolar interaction, and therefore this interaction
could not explain ferromagnetic order. The physical phenomenon that is at the
origin of the ordering of the magnetic ions is the exchange interaction, an
interaction of electrostatic origin that results from the indistinguishability of the
electrons. We shall discuss the formulation of the exchange interaction, arriving
at the Heisenberg hamiltonian, and its connection with the molecular field
concept (e.g., Patterson 1971).

Schrédinger’s equation is written

HY = if (%) (3.1)

Assuming that the wavefunction ¥ can be separated into a spatial and a
temporal part:

U(r,t) =®(r)T(1) (3.2)

63
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it follows that the spatial part & obeys
H®(r) = E®(r) (3.3)

where E is the energy.

Let us consider a system formed of two electrons, spatial coordinates r,, r,
spin coordinates o; and o5, and nondegenerate energy states. Conventionally, o
can be 41 or —1, corresponding to the z projection of the spin equal to +1 and
— 1, respectively.

The individual wavefunctions satisfy

Hé@m(rl) = Ejpn(r)) (3.4a)

and
Hiu(r2) = Expa(ra) (3.4b)

where m and » are quantum numbers labeling the states of the electrons and E|
and E, are the corresponding energies. The hamiltonian for the pair of electrons,
assuming for the moment that they do not interact, is the sum of the partial
hamiltonians

Ho = Hy + Hj (3.5)
From the one-electron wavefunctions one can form

D) = om(r)on(r2) (3.62)
and

Py = n(r1)om(r2) (3.6b)

which are eigenfunctions of the total hamiltonian [Eq. (3.3)], with eigenvalue
Ey=E,+E,.

We will now assume that there is an interaction between the electrons. This is
accounted for by introducing into the hamiltonian [Eq. (3.3)] a Coulomb
potential term Vi, (x|, 1) = ez/rlz to describe it:

H =Hy+ Via(ry,12) (3.7)

The energy states of the system in the presence of this perturbation are

E=Ey+E, (3.8)



EXCHANGE INTERACTION 65
obtained using the unperturbed wavefunctions ®; and ¥, and solving

‘<1|Ho+ Vip|ll) - E (1V12]2) =0 (3.9)

2IVial1) (2Ho + Vi2|2) — E

where |1} and |2) refer to ®; and ®,, respectively and

mmmE/@mmeWmmwmw
z/mmwmmwmm%mwf

= [ e Vaen(r)ene)dr
= 2Vl (3.10)
and dr is a volume element; we have used V,, = V;,. We can also show that

(V1) = 2|V1a|2).
The eigenvalues obtained from Eq. (3.9) are

E, = Eg+ Ky + J 12 (3.11)
with
Kip = (1|Viall) = 21V12]2) (3.12a)
T = (11V2f2) = 2Vi1) (3.12b)

where K|, is the Coulomb energy, specifically, the electrostatic energy of
electrons in the unperturbed states, and 7, is called the exchange integral,
also measured in energy units. The eigenvectors are

o, = \/% (@, + ) (3.13)

Experimentally it is observed that the total wavefunctions of the electrons and
of the totality of the particles with half-integer spin (called fermions, since they
follow Fermi—Dirac statistics) are antisymmetric; that is, they change sign when
two particles are interchanged. The particles with integer spin (bosons, from the
Bose statistics) have symmetric wavefunctions.

We may obtain this antisymmetry by combining a spatial function ¢ with a
spin function y in two different ways (using subscripts S and 4 for the symmetric
and antisymmetric functions, respectively):

d4(r 1) xs(01,02) (3.14a)
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bs(ri12)x4(01, 02) (3.14b)

Thus an antisymmetric x must multiply ¢ and a symmetric x must multiply
b

From the “spin up” wave function of the i electron a(i) and the “spin down”
wave function of the j electron 3(j), we can construct the antisymmetric y 4:

[(1)8(2) = a(2)8(1)] (3.15)

and the symmetric x, that can take the forms:

a(l)a(2)
xs =4 =B + a@s() (3.16)
B1)A2)
Thus, there exist, for two spins % three symmetric spin functions xg,
corresponding to a total spin S =1 (“parallel spins”), and one single anti-
symmetric function y 4, corresponding to S = 0 (“‘antiparallel spins”).
We therefore have two cases:

{¢S and x, giving S =0 (singlet) (3.17)

¢4 and xs giving S =1 (triplet)

The sign in Eq. (3.11) is the same as that in Eq. (3.13); if it is positive, the
spatial part of the wavefunction is symmetric [from (3.13)], and therefore the spin
function is antisymmetric (T]). The state of minimum energy, or ground state,
will in this case correspond to 7,(0 [from (3.11)].

The negative sign in (3.11) corresponds to the symmetric spin function (77);
the ground state is obtained in this case for J,,)0. The two situations are then

J1» < 0: ground state is T (singlet)
J12 > 0: ground state is 77 (triplet)

Consequently, the energy E in these two cases depends on the relative
orientation of the electronic spins; thus, to represent the interaction between
the electrons, it suffices to introduce a term in the hamiltonian containing a
factor

$1°$ (3 1 8)
Thus, the connection between the spin and spatial parts is indirect, although

necessary, imposed by the antisymmetry of the total wavefunction. Because of
this connection, the effect of the electrostatic interaction between the electronic
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charges may be described as an interaction between spins. Also, the motions of
the electrons with parallel or antiparallel spins are correlated; for example,
electrons of parallel spins tend to avoid each other.

Expanding the spin product, we obtain

S| -8 = % [(s) + 52)2 —s — Sg] (3.19)

For electrons, s = § and
(st) = (s3) =3 (3.20)
in units of 7. The brackets (- - -} indicate the expectation value, or the quantum
average of the operator. The expectation value of the operator total spin squared

is given by

((s) +5)°) = S(S+1) (3.21)
This mean value will be equal to 0, for antiparallel spins (S = 0), or equal to 2,

in the parallel case (S =1).

The corresponding energies become

E+ = Eo + Km + j]z for <Sl ‘Sz> = —% (S = 0) (3222‘1)

E_ = Eo + K12 — \-712 for <S] 'Sz> = +z (S = 1) (322b)

Adding (=27 5(s;*s2) — 37 12/2) to the first equation and (—2712(s; + 1) +
J12/2) to the second equation (which does not alter them), we obtain the
equation

Ey = Eg+ K —5T1— 2T 12(s1+82) (3.23)

The conclusion is that the introduction of the interaction term V|, between
the spins leads to the appearance of a new energy term; this result can be
accounted for by including in the energy a term dependent on the relative
orientation of these spins:

—2T12(s1 +s2) (3.24)

which can be used to express the two energy states of Eq. (3.11) (Fig. 3.1).
In a solid, the hamiltonian describing the interaction is:

H=-27>_8:S (3.25)

i<j
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Figure 3.1 Energy levels of a system of two spins } for 7;, > 0. The highest energy state
corresponds in this case to one spin function with S = 0; the lowest state corresponds to three spin
functions, with S = 1 (threefold degenerate).

where now the sum is performed on each pair of atoms (i, /) and 7 is an effective
exchange parameter. This is known as the Heisenberg hamiltonian, and it is
widely used for the description of many magnetic properties of materials,
particularly insulators.

In the formulas in this chapter, S is measured in units of %; otherwise, this
expression would appear divided by #2.

In the study of the magnetism of the rare earths, since J is a good quantum
number, the preceding interaction [Eq. (3.25)] is written, using the projection of S
on the direction of J, 0 = (g — 1)J, where g is the Landé g-factor:

H=-27) o0 (3.26)

i<j

Expanding the scalar product, the Heisenberg hamiltonian is written

H =27 (SIS} +S/S! + SiS)) (3.27)

<)

A spin system with a privileged direction, defined, for example, by an external
magnetic field, or by an axial crystalline anisotropy, may be described by a
simplified hamiltonian. Its expression is

H=-27) Sisi (3.28)

i<j

known as the Ising hamiltonian. This hamiltonian accurately describes the
magnetism of a large number of physical systems.
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3.2 THE MEAN FIELD

We will show the relation between the Weiss molecular field and the Heisenberg
hamiltonian. We start by describing, with the Heisenberg hamiltonian, the
interaction of an atom of spin S; with its z near neighbors:

Hi=-2T) S-S, (3.29)
J

Expressing this in terms of the projection ¢ of S on the direction of the total
angular momentum J, we have

Hi=-27) o;-0; (3.30)
J

If there exists spontaneous magnetic order, with magnetization M, we can
assume that the individual magnetic moments feel a mean field; in the molecular
field approximation, this is given by A,,M, which is proportional to the average
magnetic moment 7z:

B, = \,M = )\ nfp = — A, ngup(J)r (3.31)
where n is the number of magnetic moments per unit volume and (J)7 is the
thermal average of J. The concept of a mean field (or of a molecular field) is
applicable if the amplitude of the fluctuations in the magnetic field acting on the
atomic moments is not very large on a given site, and if it is small from point to

point.
One can approximate the interaction of the ion i:

Hi=-2T(g~ 1) (Z Jj) Jim =27 - 1)’ 2(J)r - J; (3.32)

Equating the exchange interaction of the spin i Eq. [(3.29)] to the interaction
of the moment g that is acted on by the molecular field

Aatgup(d) 7 - = =27(g — 1)*2(d) 7 - J; (3.33)

we finally obtain, using pt = —gupJ and assuming that the sum is done on the z

near neighbors
22
ng bp
J=——= M 3.34
<2Z(g— 1)2> (3349
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From this expression one sees that the exchange integral 7 is proportional to the
molecular field constant \,,.

As examples of the magnitudes of 7, one can quote J(Fe) = 0.015 meV,
J(Ni) = 0.020 meV.

3.3 INDIRECT INTERACTIONS IN METALS

The values of the magnetic moments of the pure rare earths are approximately
the same as the values corresponding to the free ions. This happens since the 4f
electrons are localized; that is, they have a mean radius {r) much smaller than the
interionic distance dgg (Fig. 3.2), and therefore are not much affected by the
chemical bonds. One consequence of this localization is that the mechanism that
gives rise to rare earth magnetic order is not the superposition of the 4f orbitals
in neighbor atoms; other electrons besides the 4f electrons must be responsible
for this order. It turns out that the conduction electrons, which have an itinerant
character, play a decisive role in the ordering mechanism.

The first theoretical treatment of this coupling between the atomic spins
through the conduction electrons is due to Zener (Zener 1951), who assumed
three effective exchange constants; one between each atomic spin and its first
neighbors, another between the atomic spins and every conduction electron, and
a third connecting each conduction electron to all the others. This can be
simplified to an effective hamiltonian containing interactions between the

bee Fe hcp Gd

o 10—

< 10 r 4

E *
N>L< 4p

<

£ 4s
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g 6s
S sk 3d 5|

2 5d
[$]

=

T
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A |
o} °1.0 0 1.0 2.0
Radius (A) Radius (A)

Figure 3.2 Nommalized charge density of the electrons in bec iron and hep gadolinium, as a
function of the radius (in atomic units). [Reprinted from R. Coehoorn, Supermagnets, Hard Magnetic
Materials, 1990, p. 140, with kind permission from Kluwer Academic Publishers, Amsterdam.]
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atomic spins S, and between atomic spins and conduction electron spins:

N z
H==-2)"3 J;8-S,-2> JilSk s (3.35)
i

k<l

where s are the conduction electron spins; this is a first approximation for the
description of the magnetism of the rare earths.

The Zener model leads to a uniform polarization (or spin density) of the
conduction electrons.

A more adequate description, however, allows the conduction (or itinerant)
electrons to have a nonuniform spin density; this can be obtained with a
susceptibility x(r) that is nonlocal. This is equivalent to a susceptibility x(q)
dependent on the wavevector q (| q |= 2w/)). The polarization of the itinerant
electrons, in this case, has the form (e.g., Martin 1967):

p(r); — p(r), = > _[A(q) cos(q - r) + B(q) sin(q - r)] (3.36)
q

where A(q) and B(q) are the Fourier coefficients of the spin polarization. It
should be noted that although the spin polarization varies spatially, the charge
density is not affected.

The interaction leading to the preceding result is described by the hamiltonian

H=-2) TR —R)S;"S, (3.37)
il

with the indirect atomic exchange constant 7, given by the Fourier expansion

x(0)7(q)*

R,—R) =
ja( i J) 47’1282/1%5

q

coslq - (R; — R;)] (3.38)

This quantity exhibits an oscillatory behavior with the separation between the
spins, and also an attenuation arising from the q dependence of the amplitude
x(@)7(@)* (Fig. 3.3).

The susceptibility x(q) is given as a function of the Pauli susceptibility
function xp by (see Section 4.2)

2 2
14k qln‘sz+q‘} (339)

x(q) :XP{§+ Rirg %, —g

where k is the value of the wavevector k at the Fermi level.
Making the approximation 7(q) ~ J(0), we can obtain, from Eq (3.38), the
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F(X)= X COS X -Sin X

X4

0 O~

N x
® © O ©® O

Conduction electron spin polarization

Figure 3.3 Dependence with the distance of the exchange integral 7,(R, — R;) in the indirect
interaction in metals, according to the RKKY model.

result of Ruderman and Kittel (1954):

XPJ(O)z
R, —R)) = -5=5—==5-12mn F(2ky | R; — R, 3.4
ja( i j) 4n2g2u§ T ( Fl i j l) ( 0)
with the function F given by
| .
F(x) = —(x cosx — sinx) (3.41)
X

Therefore, 7,(R; — R;) oscillates with the distance, with period 1/2kg, and its
amplitude decreases as | R, — R; |73. Consequently, the conduction electron
polarization presents the same oscillatory behavior; this is the most important
result of the so-called RKKY (Ruderman—Kittel-Kasuya—Yosida) model.

The preceding results were obtained from a susceptibility x(q) of electrons
that do not interact among themselves. The existence of electron—electron
Coulomb interactions increases the susceptibility. This fact may be taken into
account in a simple way. The magnetization due to a field H(q) is

M(q) = x(q)H(q) (3.42)

To include the electron—electron interaction, it suffices to assume that the
electrons feel a molecular field due to their own magnetization:

M(q) = x(q)[H(q) + vM(q)] (3.43)
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Table 3.1 Enhancement factors {F = 1/[1 — vx(q)]} for some metals

Element Mo Pd Os

F 4.6 9.3 0.4

Source: Reprinted from Landolt-Bornstein, Magnetic Properties of 3d Elements, New Series 111/19a,
Springer-Verlag, New York, 1986, p. 39, with permission.

where v = A/ is a molecular field coeflicient that measures the strength of the
electron—electron interaction (u is the vacuum permeability).
Solving for magnetization, we obtain

Mg = Hl (344)

from which one can derive a new susceptibility x.(q), called enhanced suscepti-
bility, which includes the effect of electron—electron interactions:

x(q)

oo (3.45)

X.(q) =

One therefore finds that the magnetic response of the electrons in the case where
they interact with their own magnetization is amplified by an enhancement
factor F = 1/[1 — vx(q)]. This factor attains a value of the order of 10 in the case
of palladium; Table 3.1 shows some values of F.

Experimentally, positive and negative effective exchange integrals are
observed. Typical values of 7 for the 3d elements range from 107 to 1072 J,
corresponding to J /k varying from 10° to 10° K.

In metallic systems containing rare earths, one mechanism that may lead to
negative values of J (Anderson and Clogston 1961) depends on the s —f
hybridization. In other words, it depends on the mixing of s and f character of
the electrons, or on the virtual occupation of f states by the s electrons. An
electron with wavevector k is absorbed in a nonoccupied 4f'state, and reemitted
with wavevector k . This process lowers the energy of the occupied 4fstate and of
the conduction electrons with spin parallel to the localized spin, therefore
increasing the number of electrons of antiparallel spin to the 4f spin Sy, and
this is equivalent to a negative effective exchange parameter 7 (Fig. 3.4).

3.4 PAIR OF SPINS IN THE MOLECULAR FIELD (OGUCHI METHOD)

In the Weiss model each spin feels the result of the long-range magnetic order of
the material through the molecular field; the role of the individual spins is to
contribute to this grand average. The treatment is equivalent to taking into account
only the time average of the projection of each spin. In real solids, however,
the motion of a given spin shows strong correlation with the motion of its
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Figure 3.4 Nonmagnetized conduction bands of metallic Gd (spinup and spindown subbands
represented by k; and k;) showing the full 4f, level (below E¢) and empty 4f, (above Eg). The
intraband mixing is responsible for the effective interaction, with 7 < 0. [Reprinted from R. E.
Watson, in Hyperfine Interactions, A. J. Freeman and R. B. Frankel, Eds., Academic Press, New
York, 1967, p. 443.]

near-neighbor spins. In fact, even above the critical temperature T (the Curie
temperature in a ferromagnet, i.e., the temperature above which there is no
long- range magnetic order), some degree of local order is observed; in a small
region around each spin, the moments remain correlated. A simple model to
take into account this type of short-range correlation was proposed by Oguchi
(1955). In this model one spin interacts with one of its neighbors, and this pair
feels the effects of the other spins through a mean field.

The Weiss model considers a single magnetic moment that is coupled to the
other moments through a mean field (or molecular field):

Bm = /\m"</i12'>r (346)

where (- - )7 denotes a thermal average.

This model does not take into account the correlation expected between the
motions of neighbor magnetic moments. A measure of such correlation is given
by the order parameter 7:

1
where i and j label moments at neighbor sites.
In the Weiss approximation, the magnetization for external field By = 0 and
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temperature T is given by
Mor = n{pg)r = guen{J™)r (3.48)

where n is the number of magnetic moments per unit volume and Myr is the
spontaneous magnetization, at temperature T

Myr
JNp =—= 349
VT = g (349)
AtT=0
My = gugnt (3.50)

Noting that in the Weiss model, since the motion of each spin is independent
of the other, (J;-J;) = (J;) - (J;), we can then obtain the values of the order
parameter 7 at different temperatures:

1 for T = 0
Mor ) ?
—_ for T < T 3.51
(gNBnJ ¢ ( )
0 for T > T (since Mor=0)

Above T the order parameter is zero; in this region there is neither long-
range order (or magnetization) nor short range order (or correlation between the
spins in neighbor sites).

This is in disagreement with the usual experimental behavior of 1/x for T >
T¢ (Fig. 3.5), and of the specific heat C,; both quantities reflect the consequences
of local order.

To describe this type of behavior, a model considering a coupled spin pair in a
mean field was proposed (Oguchi 1955). The starting point is the hamiltonian
(Smart 1966):

H==-27JS,;-S; — gug(Ji +J;)B (3.52)
where the first term describes the interaction between the two spins, and the
second term the interaction of the pair with the total field B = Bk. This is
equivalent, in terms of the angular momentum operator J, to

H=—-27(g—1)’J;-J; - gus(J + J})B (3.53)
Defining the total angular momentum operator of the pair

and following the same steps of the derivation of the Weiss model (Section 2.3),
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Figure 3.5 Curve of the inverse of the susceptibility of Ni as a function of temperature above Tg;
the deviation from Curie—Weiss law results from the persistence of local order above this
temperature.

we derive, for J = %, the value of the z component of J':

2sinh(b)

(Jr = 1 4+ exp(—2j) + 2 cosh(b)

(3.55)

with

J(g—1)°

I= 7T

gusB
b= .
b (3.56)

The magnetic moment per ion (half the moment of the pair) is

z> gHB (J/z> — gUp Slnh(g/LBB/kT) (3 57)
T T 1+ exp(—27(g — 1)2/kT) + 2cosh(gugB/kT)
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compared to the result of the Weiss model, which is, for spin :

w1 1 B
() = 3818Bya(x) = 3 guptanh (gg; ) (3.58)

To describe a ferromagnetic system, we will initially return to the Weiss
model; this time we will distance ourselves from the approach of Section 2.6 and
assume that the molecular field is due to the z near neighbors of the spin, as in
Section 3.2. Then the molecular field constant becomes, from Eq. (3.34)

2J
m=—=(g-1z (3.59)
ng 1y
Analogously, the molecular field constant in the Oguchi model due to the
z — 1 neighbors (excluding the one forming the pair with the central ion) is

27

o _ ( 2

=——(g-1D(=z-1 (3.60)
" ngup

In a similar way to the derivation of Section 2.6, we can obtain the transition
temperature (7¢) in the Oguchi model, deriving the expression of the tempera-
ture at which the spontaneous magnetization vanishes, in zero external field.
This is given by the equation

exp(—2j,) +3 =2(z — 1)j, (3.61)

where z is the number of nearest neighbors and j, is the quantity j defined above
[Eq. (3.56)], for T = T. The value of T can be obtained, for different values of
z, by solving Eq. (3.61). It turns out that the values of T given by the Oguchi
model are lower than those given by the Weiss model, for the same 7 parameters.
This is a general result; the incorporation of local order effects lowers the
transition temperature of the magnetic system (Smart 1966).

To obtain the magnetic susceptibility we begin by computing the magnetiza-
tion M7 at temperature T and applied field B. The susceptibility per mole is
given by

oM oM
= " i 3.62
and it follows that
2 2

kT(exp[-2J(g — 1)*/kT] +3) = 2(z — )T (g — 1)?



78 INTERACTION BETWEEN TWO SPINS

At high temperatures, one can approximate

132 Y2
exp (—%) ~ 1] —%——1)— (3.64)

and x,, becomes

pog N /4k
T —27(g—1)%z/4k

m =

(3.65)

The numerator in the expression of x,, is the Curie constant in the Weiss
model (for J = 1) [Eq. (2.64)], and we may rewrite Eq. (3.65) as

C

(3.66)

The paramagnetic Curie temperature 6 in the Oguchi model is given by

21y (3.67)

69 =
which is the same result of the Weiss model [from Egs. (2.91) and (3.60)]. The
conclusion is that at high temperatures the two models show quantitative
agreement.

For intermediate temperatures, the approximation Eq. (3.64) is not valid, and
we find that x tends to infinity as T approaches T, but in this case 1/x is not
proportlonal to (T — 6p), that is, the dependence of the inverse susceptibility is
not linear with 7, as seen in Eq. (3.63).

Finally, the correlation function, or short-range order parameter, is given, for
Jy = J, =4and By = 0, by the statistical average:

—4J;-3)r (3.68)

== > — N((Jy + 1) = Jo(Jy + D] Tr[ exp(—H, /kT)] (3.69)
M J

Nl#

with Z the partition function for the pair. The result is (Smart 1966):

_ (2cosh(b) 4 1) — 3exp(-2j)
~ (2cosh(b) 4 1) + exp(—2j)

(3.70)

with b = gugB/kT and j = J(g — 1)*/kT.
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Figure 3.6 Dependence of the order parameter 7 with the reduced temperature kT/7 in the
Weiss model, and in the Oguchi model, showing in the latter the persistence of local order above T,
(z=6, S=1). [Reprinted from J. Smart, Effective Field Theories of Magnetism, Saunders,
Philadelphia, PA, 1966, p. 42.]

The order parameter 7 is given, noting that B =0 for T > T:
1 for T=0 (asinthe Weiss model)

r={ 31 = exp(=2)

3 +exp(=2/)]

371
# 0 for T > TC ( )

Thus, the model predicts that the local order subsists above T (Fig. 3.6), as
observed experimentally by the dependence of x(T) or by neutron scattering.
The Oguchi method therefore overcomes this limitation in the Weiss model, of
not accounting for local order effects.

There are other models that describe magnetic systems in terms of a pair of
spins under the action of a molecular field; in the case of the constant coupling
approximation, for example, this field is not proportional to the magnetization,
and is obtained from statistical considerations. Instead of a pair of atoms, a
larger cluster has also been considered; in the Bethe—Peierls—Weiss method the
cluster has z + 1 spins under a molecular field.

3.5 SPIN WAVES: INTRODUCTION

In a ferromagnetat 7 = 0 K all the spins have the maximum projection S in the z
direction; this is the ground state configuration. As the temperature is raised the
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Figure 3.7 Schematic representation of (a) a spin wave propagating along a linear chain of spins
in the x direction; (b) the same seen along the z direction. [Reprinted from C. Kittel, Introduction to
Solid State Physics, 7th ed. Copyright © 1995, John Wiley & Sons, Inc., New York. Reprinted by
permission of John Wiley & Sons, Inc.]

projections are reduced, and a classical image of this effect is shown in Fig. 3.7. A
wavelike perturbation flows through the spin system: the spin wave. The spin
wave theory leads to the description of the magnetism of ferromagnets at low
temperatures, in the regime where J° =2 J. We will introduce the spin waves first
through a macroscopic description, and then show the relation to a simple
microscopic model.

Let us consider the projection of the magnetization M*(x) varying continu-
ously from point to point; if the magnetization deviates from its saturation value
at a given point, a torque M(x) x AV>M(x) acts on the magnetization, and the
equation of motion is (Martin 1967)':

%M(x) — M(x) x AVM(x) (3.72)

where A = D/(hvyM,), with M, the saturation magnetization and D a parameter
called “stiffness constant”, which measures the strength of the tendency of
aligning the local magnetization to recover its saturation value; + is the
gyromagnetic ratio of the atomic moments p:

pu=~S =M (3.73)
In this expression, M is the magnetization and v is the volume occupied by one

atom; dividing by v, we obtain the expression for the spin density S(x) in terms of
the local magnetization M(x):

M(x)
= 3.74
80 = (3.74)
We look for the deviations m from the uniform magnetization My:
m=M-M, (3.75)

! The laplacian of a vector M is a vector of components VM., VZM_V, and V°M..
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The solution of Eq. (3.72) gives

m = mg(sinwti 4 coswij) sin(k - r) (3.76)
with
w= %kz (3.77)

where k is the modulus of the wavevector.

We will now discuss the spin waves within a microscopic model. The
Heisenberg hamiltonian predicts that the lowest energy state (the ground
state) of the spin system corresponds to a configuration with all spins aligned
in parallel. It is easier to show this fact if we write the hamiltonian in terms of the
operators

St =8"+is (3.78a)
S =8 -is (3.78b)
where i = v/—1. The hamiltonian becomes
Nz
H=-27Y (S7S; +1S7 8/ +5is)) (3.79)
i<j

Using the matrix form of the spin wavefunctions (the eigenvectors of S?)

v () ue () oo

and of the spin operators (the Pauli matrices)

YO , (0 i . h(1 0
S _5(1 0) S ‘E(i 0) S‘E(o —1> (3:81)

and recalling the rule of matrix multiplication
a b\[fe\ [ae+bf
(c d)(f>_(ce+df> (3.82)

Stxe =0, S™x3=0 (3.83)

we obtain



82 INTERACTION BETWEEN TWO SPINS

and the property that justifies the notation for the spin operators, with super-
scripts + and — is:

S+Xﬂ = hx,, S Xa = fixs (3.84)

This means that the operator S* applied to a function corresponding to spin
—% transforms the function to that of spin —|—%; conversely, S~ inverts the spin
from +4 to — 1.
The total spin wavefunction for a system of N aligned atomic spins is the

product of the individual functions:

X :X(x(l)Xa(z)Xa(3)"’Xa(N) (385)

Using the properties of the spin operators and x functions described above, it
is easy to demonstrate that the preceding wavefunction [Eq. (3.85)] satisfies
Schrddinger’s equation:

Hyx= fhz%Nz X (3.86)

It can be demonstrated that this function corresponds to the minimum energy,
that is, to the ground state. This is done by noting that the maximum value of
(S;-S))is #* /4, and therefore the minimum of the energy

is —1%(J /4) Nz, in agreement with the preceding result [Eq. (3.86)]. We conclude
that the perfectly aligned configuration is the ground state for 7 > 0. A set of
spins coupled ferromagnetically is aligned in parallel at 0 K.

We will now discuss the excited states of the spin system. A spin system in
thermal contact with a thermal reservoir (e.g., the lattice in a solid) will not be in
its ground state configuration, if 7" # 0. Assuming that the excited states are
characterized only by changes in the orientational state of the spins, the
excitation will imply a reduction in the spin projection along the quantization
direction: as the temperature is raised, the z component of the magnetization M
decreases.

We may describe this process with a classical image of spins precessing around
the z direction with an angle € that varies along the x direction. In energy terms,
this form of excitation is less costly than the reduction of the magnetization
through inversion of spins (Fig. 3.7).

We will consider a system of N spins, each one interacting with z neighbors,
and in the presence of a magnetic field B. The hamiltonian is (assuming only spin
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angular momentum, i.e., J = S):
N z N
H=-27) > 8-S —guz» SiB (3.88)
i i

Let us take, for simplicity, a one-dimensional spin system; in this case z = 2.
Neglecting the second term, that describes the interaction of the spins with the
field B (Zeeman term), we obtain for the energy of the spins, in the classical limit
(at T = 0):

E, = -2(N - 1)J§? (3.89)

If instead of a spin system with all spins aligned, one had N — 1 aligned spins
and one antiparallel spin, the energy would be

E,=-2(N-3)J8*+2x2JS8* (3.90)

This energy is larger than that in the ferromagnetic case (preceding case); the
difference is

AE=E,—E =878° (3.91)
We will show that the spin can take excited configurations with energy much
lower than the preceding energy, if spin waves are created. The classical

expression of the energy of the spin of number p, in a linear chain, interacting
with two nearest neighbor atoms [(p — 1) and (p + 1)] is

E,=~27S,1-S, ~ 27S, Sps1 = —2T(S,-1 +Spe1) - S, (3.92)

which is equivalent to

2J
Ey = ——(Sp-1 +Sps1) - gusS, = —B, - p, (3.93)
8hp

where B, is the field due to the neighbors, acting on the moment p.
Equating the rate of change of the angular momentum 7S, to the torque
1, x B,, one obtains

1S, =278, X (Sy_1 +Spu1) =278, x 38, (3.94)

where the sum is done over the z neighboring spins in the linear chain. Looking
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Figure 3.8 Magnon dispersion relation obtained by inelastic neutron scattering in RbMnFe; at
4.2 K; the curves are calculated for different directions. [Reprinted from C. Kittel, /ntroduction to
Solid State Physics, 7th ed. Copyright © 1995, John Wiley & Sons, Inc., New York. Reprinted by
permission of John Wiley & Sons, Inc.]

for solutions of the type

S, = U expli(pka — wt)] (3.95a)

S, =V expli(pka — wr)] (3.95b)

where a is the lattice spacing, U and V are constants, and p is an integer, we

obtain the condition

hw(k) = 4T S[1 — cos(ka)] (3.96)

The function w(k) is called a dispersion relation; this is its expression for spin

waves (Fig. 3.8). We made the approximation S, S, < S and S, = §, valid for

small deviations of the spins from the equilibrium position. We also obtain

V = —i U, which shows that the motion of the spins is a precession around the z

axis. The angular momenta precess around the direction z, and this excitation
propagates along the chain in the plane (x, y).

In the limit of long wavelengths, since k = 27/\, ka < 1, (1 — coska) =
2sin’ (ka/2) = %(ka)2 and the dispersion relation becomes

hw = 27 Sa*k* (3.97)
This is the same as (to be shown below):
hw = Dk? (3.98)

where D is the spin wave stiffness constant.
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In the quantum description the total spin quantum number of the set of N
spins may have values NS, NS — 1, NS — 2, and so forth.

Therefore, the z component of a spin is S° given by [using S, and S of Egs.
(3.95)):

i U?
S‘=\/52—Sx2—sy2:,/(52—U2)gs—§§ (3.99)

for small values of U/S.

The number N(S — S7) that gives the reduction in the projection of the total
spin in the z direction can attain only integer values. If this reduction is
associated with the appearance of n; spin waves of wavevector k, and each
wave reduces the spin of one unit, we have

N(S—Sz)ﬂNgé—n (3.100)
s Tk ‘
or
2 ZSI’lk
U; = N (3.101)
The energy of interaction of N pairs of spins is
N
E=-27)_8,-S;=—-2JNS’cos¢ (3.102)
The angle ¢ is given (Fig. 3.9) by
. ¢ Usin(ka/2) U . ka
sin = 5 = sin— (3.103)
For U/S < 1, using cos x = 1 — 2sin’(x/2), we obtain
U\? » ka
cosp=1-— 2(§> sin > (3.104)

and the energy is
Lk
E = —2JNS* + 4T NU?sin’ 7" = —2JNS* +2JNU*(1 —coska) (3.105)

Therefore the excitation energy of a spin wave is

& = 2INUF(1 — coska) (3.106)
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2u sinlka
2

Figure 3.9 Neighbor spins in a ferromagnet along the direction of propagation of a spin wave. The
projections of the spins form an angle of ka radians.
But, from (3.101):
e = 4T Sn (1 — coska) (3.107)
From (3.96), it follows that the excitation energy of the spin waves is
€ = nkhwk (3108)
The spin waves are therefore quantized, and the quanta are called magnons: n,
is the number of magnons of wavevector k. The number of magnons #; in

thermal equilibrium at temperature T follows a Planck distribution:

i
~exp(hw /kT) — 1

(mg) (3.109)

Summing the reduction in magnetization due to all the magnons and dividing
by the maximum value of the magnetization, we may obtain its relative variation
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(Exercise 3.3):

AM_an kT 32
My - NS x <2JS> (3.110)

This characteristic dependence of the magnetization, proportional to 732, is
a result confirmed experimentally at low temperatures for many systems and is
known as Bloch’s T** law (Fig. 3.10).

One can establish a link between the preceding microscopic description of
spin wave phenomena using the Heisenberg hamiltonian, and the phenomen-
ological discussion in terms of the local magnetization introduced at the
beginning of this section. To do this, we expand the spin density function in a
Taylor series around the atom of order p:

v

’
1 (Spo1 +S,01) =S(x —a) + S(x + a) # 28(x), + & (8 S(X)> I

1.0

0.9+

M(T)/M(0)
I

0.7 -
0.6 -
! 1 | | | 1 !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(T7Te)*

Figure 3.10 Variation of the spontaneous magnetization of Gd as a function of temperature,
exhibiting a dependence of the form o« T%2, characteristic of the contribution of spin waves.
[Adapted from N. W. Ashcroft and N. D. Mermin, Solid State Physics. Copyright © 1976,
Saunders College Publishing, Orlando, FL. Reproduced by permission of the publisher.]
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or
1 zZ
- D8~ 28(x), + d’V,8(x) (3.112)

where S(x), is the spin density at the spin p, v is the volume that contains the
atom with this spin, and a is the lattice parameter of the linear chain.

Substituting the expansion into the expression of the torque acting on the spin
p [Eq. (3.94)], we obtain

1S, = 2JS, x v[28(x), + @’ V,S(x)] (3.113)

The first term of the vector product is zero since S(x), is parallel to S; we then
have:

1S, =278, x [dvV;8(x)] (3.114)
or
hS8(x) = 278(x) x [a*vV2S(x)] (3.115)
Using (3.74)
S(x) = Mh(;‘) (3.116)

we can express Eq. (3.114) in terms of M; comparing with the equation of motion
of M [Eq. (3.72)] the following relation is then apparent

D=2Jd’S (3.117)
where S is the spin.

This equation embodies the connection between the two approaches to
the spin wave problem: the microscopic description using the Heisenberg

Table 3.l Spin wave stiffness constants D for 3d metals at room temperature (in meV AZ)"'

Element Fe Co Ni

D 280 510 455

To convert to joules square meter (J m?), multiply by 1.60219 x 1074,
Source: Reprinted from E. P. Wohlfarth, in Ferromagnetic Materials, Vol. 1, E. P. Wohlfarth, Ed.,
North-Holland, Amsterdam, 1980, with permission from Elsevier North-Holland.
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hamiltonian and the phenomenological discussion through the local magnetiza-
tion M(x); it shows that the stiffness constant D (see Table 3.1I) is proportional
to the exchange constant 7.
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EXERCISES

3.1 Magnon Dispersion Relation. Show that for a simple cubic lattice with
z = 6 the magnon dispersion relation [Eq. (3.96)] becomes

hw=2JS lz — ) cos(k- 5)]
§
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where 8 is the vector that connects the central atom to each nearest
neighbor. Show that for ka < 1,

hw ~ 2T Sa*k?

where a is the lattice parameter.

Magnon Specific Heat. The total magnon energy is given by the sum of
the energies of each magnon multiplied by the number of magnons in the
state k:

vV hw
U= hw=——= | k-
X mhs | P

Using the approximate relation w = Ak?, evaluate U for low temperatures
and show that

= T
C, aToc

Bloch T*?* Law. The thermal excitation of spin waves reduces the
saturation value of the magnetization according to

M(T) =M(0)<1 —NLSan>
k

Show that at low temperatures, when w(k) ~ Ak>

M(T) — M(0) o T2
M(0)



MAGNETISM ASSOCIATED
WITH THE ITINERANT
ELECTRONS

4.1 INTRODUCTION

The hypothesis of itinerancy of the electrons may be used to describe the magnetic
properties of the metals. [tinerant electrons are electrons that do not remain bound
to a given atom, but instead move across the whole matrix. This description applies
to the behavior of electrons in metals. Within this hypothesis one may explain, for
example, the temperature-independent paramagnetism (Pauli paramagnetism) of
the alkali metals (Li, Na, K, Rb, and Cs), and the ferromagnetism of the metals of
the 3d transition series (Fe, Ni, and Co) and their alloys.

The itinerant electrons occupy states with a (quasi-) continuous distribution of
energy; these states appear as we form a metal by putting together the isolated
atoms, as illustrated in Fig. 4.1. Initially (r = oo) there are only atomic states; as the
atoms approach each other, the originally sharp atomic energy states broaden. For
the equilibrium atomic separation (r = ry) there is a superposition of the energy
range of the 4s and 3d electrons (in the example in Fig. 4.1, which shows
schematically the situation of metallic Fe), forming bands. These band electrons
are delocalized, in the sense that they are shared by all atoms of the crystal.

In the elements of the iron group, the 3d electrons are responsible for the
magnetism; the 4s electrons give a smaller contribution to the magnetic proper-
ties; this is evident, for example, from the values of the corresponding magnetic
moments per atom (Table 4.1).

The itinerant character of the 3d electrons, responsible for the magnetism of
the elements of the iron group, contrasts with the localized behavior of the 4f
electrons, which play the same role in the rare earths. In the actinides, whose

91
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Figure 4.1 Schematic representation of the broadening of the energy states of 4s and 3d
electrons in metallic Fe, as a function of the separation r between the atoms. As the atoms
approach each other to form the crystal (with the equilibrium distance r = ), the atomic states give
way to states that overlap in energy, forming bands.

magnetism arises from the incomplete 5/ shell, the situation is more complex—
the degree of localization varies along the series. For a comparison of the spatial
behavior of the 3d, 4f and 5/ shells, see Fig. 4.2.

The band structure differs for normal metals, noble metals, and transition
metals (Section 2.2.1). This can be seen in the schematic representation of the
curve of energy—wavevector k (the dispersion curve) and density of states—
energy curve. This is shown in Fig. 4.3; the closed shells are atomic-like states
that appear in the low energy part of the plots (the straight lines in the graphs).
The conduction electrons appear in the upper part, forming parabolic bands in
the density of state graphs. The d electrons, represented by a sharper peak in the
n(E) curves, are located at low energy in the normal metals, at intermediate
energies in the noble metals, and at higher energy in the transition metals. The d
band is split for the noble and transition metals, and the upper subbands overlap

Table 4.I Magnetic moments of iron, cobalt and nickel, and d and s contributions
measured from the diffraction of polarized neutrons

Fe Co Ni
Total magnetic moment () 2.216 1.715 0.616
Moment of 3d electrons (ug) 2.39 1.99 0.620
Moment of 4s electrons (up) —0.21 —0.28 —0.105

Source: Reprinted from E. P. Wohlfarth, in Ferromagnetic Materials, Vol. 1, E. P. Wohlfarth, Ed.,
North-Holland, Amsterdam, 1980, p. 34, with permission from FElsevier North-Holland.
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Figure 4.2 Ratio of the average radius of the incomplete shells to interatomic separation for 3d
electrons of Fe, for 4f electrons of the lanthanides (Ln), and 5f electrons of the actinides (An),
versus Z. Note the large difference in the ratio for Fe and for the rare earths, and the marked
dependence of the ratio with Z, for the actinides. [Reprinted from Landolt-Bornstein, Magnetic
Properties of Metals, New Series 11l/19fl, Springer-Verlag, New York, 1991, p. 2, with permission.]

with the conduction electron energy in both cases. The upper subband is at the

Fermi level in the case of the transition metals.
The dispersion relation for noble metals shows deviations from the unper-
turbed shapes where the two bands cross, a phenomenon known as hybridization.

4.2 PARAMAGNETIC SUSCEPTIBILITY OF FREE ELECTRONS

The simplest itinerant electron model is that of a gas of free electrons, that is, a
gas of electrons that interact neither with the atomic cores nor among them-
selves. The expression for the total density of energy states of this gas (Fig. 4.4),
having only the constraint of being contained in the volume ¥, is obtained from
the Schrodinger equation, and is given by (Exercise 4.5)

2.\ 32
N(E) = 47TV<%) E? (4.1)
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Figure 4.3 Schematic representation of (a) the density of electronic states n(E) and (b) curve of
E (k) (dispersion curve) of a normal metal, a noble metal, and a transition metal. [Reprinted from M.
Gerl, in Métaux et Alliages, C. Janot and M. Gerl, Eds., Masson et Cie, Paris, 1973, p. 91.]

where m, is the electron mass and E is the energy. Each state may be occupied by
at most two electrons, one with spinup (m, = + %) and another with spindown
(my, = — %). At T =0 K, all the states up to Er, the maximum energy (called the
Fermi energy), are occupied by two electrons each, and the total number of
electrons in the volume V (free-electron gas) is

Er 9 3/2 pEg 2 3/2
N= [ N(E)E=4xv (=2 / g'2ag = 5TV (2 E/? (42)
0 h? 0 3 h?
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Figure 4.4 Density of states N(E) as a function of the energy, for a gas of free electrons at 0 K
[Eq. (4.1)], and at a temperature T. The states are occupied up to the Fermi energy Er.

Substituting the expression of N [Eq. (4.2)} into (4.1), we may write the density of
states as a function of the total number of electrons N:

_ 2m, 2 i2_3( N 12
N(E)——47TV<7> E =3 E—;/—z E (4.3)

The density of states curves for real metals can be much more complicated
than indicated in Eq. (4.3); a curve computed for bee iron is given as an example
in Fig. 4.5.

The probability that a state of energy E is occupied by an electron at a
temperature 7T is f(E), the Fermi—Dirac function

1
~ exp[(E — w)/kT] + 1

F(E) (4.4)

and p = p(T) is the chemical potential, which at 7 = 0 K is identical to the
maximum energy Er (Fermienergy) (Fig. 4.4, Fig. 4.6). Eris of the order of a few
electronvolts, and kT at the usual temperatures, is of the order of 1072 eV; at
room temperature (7 = 300 K), we have kT = L eV.
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Figure 45 Computed density of states N(E) per atom, for bcc iron, as a function of the energy,
in Rydberg units (1 Ryd = 2.18x 1078 J). The energy origin is at the Fermi level. [Reprinted from
E. P. Wohlfarth, in Ferromagnetic Materials, Vol. 1, E. P. Wohlfarth, Ed., North-Holland,
Amsterdam, 1980, p. 7, with permission from Elsevier North-Holland.]

In the expression of the total density of states N(E), the electrons have only
kinetic energy, since we are dealing with a gas of free electrons—the potential
energy is zero. If we apply an external magnetic field of induction By, a term of
magnetic energy appears, corresponding to —ugB, for the electrons with
magnetic moment up, and +uzB, for the magnetic moment down electrons
(the unbound electrons have only spin moments). The total number of electrons
per unit volume n = n; + n, of course, does not vary, only , is now different
from n|. Noting the definition of Ey of the figure (Fig. 4.7), we may observe,
using n(E) = N(E)/V, that

Ep Ep+upBy
n = %/ n(E + ugBy)dE = %/ n(E)dE (4.5a)
—psBy 0

and

b=

Ep . Er—pgBy
usBo 0
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Figure 4.6 Fermi-Dirac distribution [Eq. (4.4)], which gives the occupation of the electronic
states at a temperature T, drawnfor T=0Kand T #0K.

The resulting magnetization is given by
M = pg(ny —n)) (4.6)

which is equal to

Er+ppBy 0 ErtupBy
%us{ / n(E)dE + / n(E)dE} =1up / n(E)dE  (4.7)
0 Er—pgBy E

F F—1aBy

By the fundamental theorem of integral calculus, the preceding integral,
between Er — ¢ and Er + ¢ (where ¢ = upBy), in the limit ¢ — 0, is equal to the
integrand (at the point £ = E) times 2¢ = 2upB;. Thus

M = 153 Byn(Er) (48)
and the susceptibility at 0 K, given by OM /0H = puyOM /9B,, is then

X0 = uou%n(Ep) (4.9)
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Figure 4.7 Density of states of a gas of free electrons with magnetic moments parallel (1) and
magnetic moments antiparallel (), to a magnetic field By. Note that n; # n|, from which follows that
the system has a net magnetization M = ug(n; — n)).

This is the Pauli spin susceptibility of an electron gas at absolute zero. This
susceptibility is proportional to the electron density of states at the Fermi level.

At temperatures above 0 K, the proportion of occupied electron states as a
function of temperature; in other words, the statistics, has to be taken into
account and we have to make the convolution of the density of states function
with the Fermi—Dirac distribution f(E), which gives the probability of occupa-
tion of the states at temperature 7. The number of electrons with magnetic
moments parallel to the magnetic field (up) and antiparallel (down), per unit
volume, is now [making the change in variables as in Eqgs. (4.5)]

n = %/}x n(E)f(E + pyBy)dE (4.10b)

In the particular case of a gas of free electrons, the density of states is given
by the expression (4.1). Substituting n(E) = N(E)/V in Egs. (4.10), and using
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Egs. (4.3) and (4.4):

) L /°° E'dE (4.11a)
"4\EP) Jo expl(E - ppBy — m)/KT] + 1 '
or
3 n 3/2 /:)c x]/zdx
_3fn __Xrdax 4.11b
=3 (E;ﬂ) (kT) 0o exp(x—g)+1 ( )

with x = E/kT and € = (upBy + p)/kT. Writing

~ 172
x“dx
= - 4.12
FI/Z(E) \A exp(x _ 6) +1 ( )

the total number of electrons per unit volume becomes

3n (kT\**[ _(ugBy+ p —ppBy + 1
- (el B0+ 1 THES L 41
o= () () r ()] e

and the magnetization becomes

3nug (KT B, + —ppBy +
= o =my =2 () [F(M255) - r (o)

(4.14)

The integrals F(n) may be calculated numerically, and were tabulated by
McDougall and Stoner (1938). From the expression of A it can be shown,
expanding in series the function F, that the susceptibility becomes (Exercise 4.1)

2 kT 2
. (E) <EF> +] (4.15)
where popgn(Er) = xo [Eq. (4.9)].

Since kT <« Er, one can see from Eq. (4.15) that the susceptibility x for a gas
of free electrons (called Pauli susceptibility) is practically independent of
temperature, and is given by

X = pousn(Er)

X= NON%?”(EF) (4.16)

The Pauli susceptibility is small, of the order of the diamagnetic susceptibility.
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This means that increasing the temperature excites the electrons of the two
subbands approximately in the same way, creating no spin imbalance.

4.3 FERROMAGNETISM OF ITINERANT ELECTRONS

A simple model for the description of transition metal ferromagnetism is the
Stoner (1938) model, which treats the electron—electron interactions within the
mean field approximation.

Analogously to the treatment of the magnetism of localized electrons, one can
obtain the magnetization of the itinerant electrons, as in the previous section,
and then add another magnetic field (the molecular field) to By. Before we do
that, however, we will discuss the condition the conduction band parameters
have to satisfy to order magnetically; this is the Stoner criterion.

4.3.1 Magnetization at T = 0 K: The Stoner Criterion

A split band with #; electrons up and n; down has a magnetization given by Eq.
(4.6). Its interaction with a molecular field B,, is described by

Hy = =g By = =Sug(ny — n))Nupp(ng — ny) (4.17)
or
Hm = _%/\muBz(nT - nl)z = _%)‘muBz(nz - 4nTnl) (418)

where we have used n = n; + n). The factor § in (4.17) arises from the fact that
H,, describes the interaction of the magnetization with a molecular field
produced by the same magnetization.

We can see that H,, has two terms: one constant (#°) and another in nin;. We
will retain only the last term; then

Hm = 2Unﬂ’ll (419)

where U = )\uBz is the Stoner, or Stoner-Hubbard parameter.
Since ny; = n| = n/2 for the nonmagnetized band, the variation in magnetic
energy E,, as the band is magnetized is

_ 1, _ Loy —np\?
AE, = 2Unn —2U g0’ = ~Uzn* (F—=) (4.20)

The magnetic moment per electron, or relative magnetization (in up) is ¢

¢=""" (4.21)

n
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and we have

AE, = —Ul*¢ (4.22)

and
ny = g (1+0) (4.23a)
m=2(1-¢) (4.23b)

When the electron gas is magnetized, the split subbands T and | are shifted
26E in relation to one another. The change in kinetic energy corresponds, as
shown in Fig. 4.8, to lifting the shaded region of the moment down subband to
occupy the position of the shaded region in the moment up subband. The area of
each region is § (n; — n}), and the vertical displacement is 6.

The total variation in kinetic energy AFE, is then

1
A, =5 (my —ny)6E = noF (4.24)

2

Fermi level

N(E)

Figure 4.8 Density of states of a gas of free electrons with parallel moments (1) and antiparallel
moments (). Under an applied magnetic field, the area of the shaded region in the down subband
(right-hand side) is transferred to the top of the up subband; its final position in the latter subband is
also shown.
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Therefore, the total variation in energy as the band is magnetized will be

1 E
AE; = AE, + AE;, = —U—n2C2+n—€5—

5 5 (4.25)
Since
we substitute 6F into Eq. (4.25) and obtain
1 50 ng
E=-U=
AEy U2n§+n§2n(EF>
or (4.27)
2
__" 20 _
AEr = o EF)g [1— Un(Ep)]

From this equation, one can derive the following condition:

If [1 — Un(EF)] > 0, then Er is minimum for zero magnetization (¢ = 0)
If {1 — Un(Ef)] <0, then Er is minimum for nonzero magnetization (¢ # 0)

(4.28)

This means that the condition for spontaneous magnetic order (i.e., for { # 0)is
[1—Un(Er)) <0 (4.29)

a condition known as the Stomner criterion for ferromagnetism. From this
condition, one sees that ferromagnetism is favored for strong electron—electron
interaction (i.e., large U) and high density of states n(Er) at the Fermi level.
Computed values of [1 — Un(Ey)] give —0.5to —0.7 for Fe, —1.1 for Ni,and +0.2
for Pd (Wohlfarth 1980).

The ferromagnetic transition metals may have different degrees of occupation
of the spinup and spindown subbands: the strong itinerant ferromagnets have
only one incomplete subband, and the other totally filled (e.g., nickel); weak
ferromagnets (e.g., iron) have both subbands incomplete (Fig. 4.9).

4.3.2 Magnetizationat T 0 K

In the Stoner model the electrons with moments up and moments down are
under the effect of magnetic fields B, and B, that include the external field B, and
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Figure 4.9 Density of states curves for 3d electrons with spinup (1) and spindown (), in the
following situations: (a) paramagnet, (b) weak ferromagnet, and (c) strong ferromagnet.

a molecular field A, M:

In the absence of an external field, using the magnetization per electron
¢=(n —n)/n=M/nug

B = B, = \yM = AynpigC (4.31)

Using ¢, a molecular field parameter (proportional to \,,) with dimension of
temperature

2
g — MmiE (4.32)
k
with k the Boltzmann constant, the magnetic field becomes
k'¢
B, =B =— (4.33)
1274

The energy of one electron in each subband in the molecular field is
E;=E, —k§'¢ (4.34a)
E =E,+k#¢ (4.34b)

where E; is the kinetic energy. Equations (4.10), in the Stoner model for
ferromagnetism, become

n =1 A ” n(E)f(E — ugBy — k0'¢)dE (4.35a)
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'u=%AmMEVU%H@Bm+wsz (4.35b)

In the case of By = 0, and for free electrons, we have, using the preceding
expressions for n and M [Eqs (4.13 and (4.14)] with e = (k6'C + p)/kT

3/2 / 0
n= i—n (?) [F (——k9 IE;— M) + F(—kech+ Mﬂ (4.36)
F

3 kT\?[ (k¢ +p —kb' ¢+
=) [r(%rt) - ()] e

Solving numerically the integrals for By # 0, we obtain the (volume) magne-
tization M, or the magnetization per unit mass o(By, T} = M /p, where p is the
density, or the reduced magnetizations ¢ = o(By, T)/0(0,0) and the suscept-
ibilities.

The results obtained are shown in Figs. 4.10 and 4.11. The magnetization
curves obtained reproduce reasonably well the experimental results (e.g. of the
Cu—Ni alloys) (Fig. 4.11), where such curves for several concentrations may be
fitted with ¢ computed for different values of k¢’

0 0.5 1.0 1.5 20
T,

Figure 4.10 Spontaneous reduced magnetization ((/(;), and inverse of the reduced
susceptibility versus reduced temperature T/ T¢, for different values of k¢'/ E¢ in the Stoner model.
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Figure 4.11 Magnetization ({) in the Stoner model versus reduced temperature 7 /7. for
different values of the parameter k¢ /Eg, and experimental values of the spontaneous
magnetization of the Cu,Ni,_, alloys.

Contrary to what we had found in the case of localized magnetism (Weiss
model), in the Stoner model there is a critical value of the parameter &', that is,
there is a value of k' / Er below which there is no magnetic order (Fig. 4.12). In
the localized case, T is proportional to A, or J [Eq. (2.83)], so that for any value
of J there exists ferromagnetic order. Another difference in the itinerant electron
case is that even when magnetic order exists, ¢, (i.e., ¢ at 0 K) may or may not
reach its maximum value (= 1).

The critical values of k¢ / Er may be computed from the integral equations
that define » and M [Eqgs. (4.13) and (4.14)]. When 7' — 0 K, the Fermi-Dirac
function f(E) [Eq. (4.4)] in Eq. (4.11a) tends to 1 for F < Er, and the functions
F[(kf/¢ + p)/kT) and F[(—k6'¢ + p)/kT] become 2[(k6'¢+ p)/kT)** and
2(—kb'¢ + 1)/ kT)*'*, respectively. The expressions for n and M are obtained
from the Eqs. (4.36) and (4.37) and are written

-G HEE) T e
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Figure 4.12 Spontaneous magnetization ({;) at T = 0 K versus the parameter k¢ /E¢ in the
Stoner model.

= () @) {57 T [E5) ] e

Dividing the first equation by » and the second equation by nup, we obtain, by
summing and subtracting

(14¢) = # (Ep + k8')*/* (4.40a)
F

(1-¢) = # (Ep + k8')*? (4.40b)
F

Taking to the power % and subtracting the second equation from the first, we have

250

2/3 M2/3
1+ (-0 =

¢ (4.41)

The value of kf'/E; below which no magnetic order can occur is given,
rewriting Eq. (4.41) for small values of {. In this case

(140 =1 +§< (4.42)
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and Eq. (4.41) becomes

ko'
Er

1%

W N

(4.43)

Consequently, below k6 / Er = 2/3 there is no ferromagnetic order; this condi-
tion is equivalent to the usual Stoner criterion [Eq. (4.29)] (see Exercise 4.3).

The value of k§'/ Ep for which ¢, reaches its maximum value (= 1) may be
calculated, making ¢ of the order of 1; in this case

(14 =22 (4.44)
and
(1-¢)**~0 (4.45)

Substituting into Eq. (4.41), we find that below a value of k¢ / Ex given by

ko' _ip
5 =2 (4.46)

there is no saturation, in other words, ¢ has, at T =0 K, a value {;, < 1.
Figure 4.12 shows the variation of {, versus k6 / Ex; one can see the threshold

value of k' /Er for magnetic order (0.667) and the value below which the

magnetization at 7 = 0 K is not saturated (k¢ /Er = 27"/ = 0.794).

4.4 COUPLED LOCALIZED ITINERANT SYSTEMS

The collective model of Stoner provides a simple description and reproduces
several aspects of the behavior of metals, as, for example, the variation of the
magnetization as a function of temperature in the metals of the d group, such as
nickel. A model containing both localized magnetic moments and itinerant
moments has sometimes been used to describe the same ferromagnetic metals.
The question of the coexistence of localized and itinerant moments in these
metals is a controversial point.

On the other hand, such a mixed model seems particularly appropriate for
certain metallic systems; these are the intermetallic compounds containing rare
earths and d transition metals. These compounds present properties that are
characteristic of localized systems (e.g., Curie—Weiss-type dependence of the
susceptibility), side by side with others associated with itinerant magnetism (e.g.,
Slater—Pauling-type dependence for the d magnetic moments). There are
compounds that order magnetically, even when the rare earth present is
nonmagnetic (e.g., RFe,, R,Fe;;); the magnetism here results from the d—d
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interaction, and is a band phenomenon. Other compounds order only if the
transition metal is combined with a magnetic rare earth (e.g., RNi,); in these,
the order arises from the interaction between localized moments through the
conduction electrons. A third group shows mixed features, with both the rare
earth and the d electrons contributing to T¢.

Characterizing the d—d interactions with the parameter k6 and the
interaction between conduction electrons and local moments (angular
momentum J) with the parameter J, we may group these systems into four
classes, exemplified by rare-earth transition metal intermetallic compounds of
the AB, series:

k@ small, JJ = 0; that is, LuNi,, Tc ~ 0 K
k#¢' large, JJ = 0; that is, LuFe,, T ~ 600 K
k# small, JJ # 0; that is, GANi,, Tc ~ 80 K
k# large, JJ # 0; thatis, GdFe,, T =~ 800 K

halbalh B

The study of rare-earth 3d compounds has generated much interest due to
their huge importance as materials for permanent magnets. In this application,
the high magnetic ordering temperatures associated with the 34 elements are
combined with the strong anisotropies characteristic of the rare earths (see
Chapters 1 and 5).

To study these systems, we will consider a model in which there are two
coupled sublattices, sublattice i (ion) and the sublattice e (electron). Since the
superposition of the 4f orbitals of the ions is negligible, these orbitals interact
only with the conduction electrons: the conduction electrons, however, interact
with the ions, and among themselves. The molecular fields that act on the ions
and on the electrons are (e.g., lannarella et al. 1982):

Bi= By+—J(g— )T (4.47a)
B
B, =By + M—l- [J(g — 1),,7(,- + kQ/Ce] (4.47b)
B

with C = Me/(neﬂB) and G = Mi/(g:u'BJni)
The Stoner equations [Eqs. (4.13) and (4.14)] are rewritten with B, in the place

OfBO
s —311 k_T 3/2 F E + ugB, CF E — ugB, (4.48
S B I kT kT 48)

3n  (kT\**[ _.(E+ ugB. E — ugB
M = pg(ny —n)) = 7 B (E_) {F(—%> - F(—k'u]#)} (4.49)

F
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In the limit 7 — 0, analogously to Eq. (4.41), we obtain

23 s okt («7 )
(1+<e) _(1_Ce) —2_Ce+2J(g_1) T (450)
Ep Efp

To obtain the magnetizations (,(7) and {;(T), we solve [Egs. (4.48) and
(4.49)] numerically. The resulting curves, of magnetization, and of the inverse of
the susceptibility, are presented in Fig. 4.13 (for the narrowband limit).

The curves of electronic magnetization and susceptibility are similar to those
obtained with the simple Stoner model. It can be seen (Fig. 4.13) that ((T) is
not zero, even in the case when k6 /Er = 0. The ionic magnetization ;(T)
always reaches its maximum value (= 1) at T = 0. For T > T, the inverse of
the susceptibility, for ions and electrons, follows a linear dependence on
temperature.

In contradistinction with the behavior of the Stoner model, there is sponta-
neous magnetic order for any value of kf', provided J is not zero.

The electronic magnetization at 7 = 0 depends on the value of k6’ /E,,, for
different values of 7. The magnetic behavior as a function of the parameters
k@' / E and J may be wellillustrated by equi-7- and equi-¢, curves (Iannarella et
al. 1982). If, in the Stoner model, we make the width of the band (Er) tend to
zero, we will find an almost perfect equivalence with the localized system. The
model of two coupled systems becomes, in this case, practically equivalent to two
interacting localized moments.

4.5 MAGNETIC PHASE TRANSITIONS: ARROTT PLOTS

The free energy of a sample with small magnetization, described within the
molecular field approximation, can be expressed as a Landau expansion in
powers of magnetization M(H,T) (Landau and Lifshitz 1968). The magnetic
contribution to the free energy f,, in a field A is written

A B
fn= 5M2(H, T) +ZM4(H, T) 4 — uM(H, T)H (4.51)

To obtain the equilibrium magnetization in the presence of H, we find the
minimum of the free energy f,, as a function of M. This gives, ignoring higher-
order terms:

A L H
M(H.T) =5+ (§0> M(H,T)

(4.52)
This result shows that under these conditions the square of the magnetization
depends linearly with the variable H/M. A graph of isothermal values of M 2
versus H /M is known as an Arrott plot (Fig. 4.14).



110 MAGNETISM ASSOCIATED WITH THE ITINERANT ELECTRONS

&(m 1y
1.0f e,
"""""""" Electronic
(@) lonic ™
o5 N\ e
| | |
0 0.02 0.04 0.06 0.08 0.10 0.12
&) 1y
1.0p——
.......... Electronic
) L
lonic ..
os- o\ e
| I 1
0 0.02 0.04 0.06 0.08 0.10 0.12
1/
&(m x
1.0F )
% Electronic
(© NS e
vlonic O\ /e
o A <
| I ............. 1..' | | [
0 0.02 0.04 0.0 0.08 0.10 0.12
&m 1h
108 Electronic
@ N ) e
05 onic  \
PR N | J ] ] I
0 002 004 006 008 010 0.12

keT (eV)

Figure 4.13 lonic magnetization ¢;(T), electronic magnetization (,(T), and inverse of the
susceptibilities in the ion-electron coupled system (in the limit of narrow band), for different
values of the pair [k¢',J(g — 1)J]. (a) for k¢ = 0 and J(g — 1)J = 0.134 eV; and (b) k¢ = 0.08
eVandJ(g—1)J =0.08eV;(c) k¢ =0.123eVandJ(g — 1) = 0.0125eV;and (d) k¢ = 0.124
eVandJ(g - 1)J = 0.001614 eV, for kT = 0.062eVand J = % [Reprinted from L.lannarella, A.
P. Guimaraes, and X. A. Silva, Phys. Stat. Sol. (b) 114, 259 (1982). Reprinted by permission of
Wiley-VCH Verlag, Weinheim.]
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Figure 4.14 Plot of M? versus H/M (Arrott plot) for the itinerant ferromagnet ZrZn,. H is the
internal magnetizing field. [Reprinted from E. P. Wohlfarth, in Magnetism—Selected Topics,
S. Foner, Ed., Gordon and Breach, New York, 1976, p. 74.]

In the case of very weak itinerant ferromagnets, the Stoner model [from
Egs. (4.23) and (4.39)] leads to (e.g., Wohlfarth 1976)

H
nXo (,)M

HAT (4.53)

M*(H,T) = M*(0,0) {1 - (%)2

which has the same form as Eq. (4.52). One can thus identify the terms 4 and B

that appear in (4.51):
2
Ho T
A= — ] -1 .
2nxg [(TC> } (454

- Mt
2nxoM?*(0,0)

(4.55)

From Eq. (4.54) one can see that the line in an Arrott plot representing the
measurements made at 7 = T passes through the origin. This fact is used to
determine 7¢ experimentally from such plots.
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A modified version of the Arrott plot has been used to study phase transitions
in systems that cannot be described by the molecular field approximation (Seeger
and Kronmiiller 1989). It consists of a graph of M'/? versus (H/M)l/"*, where 3
and ~ are critical exponents.
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EXERCISES

4.1 Pauli Susceptibility (1). Show that if T is small compared to the Fermi
temperature, the Pauli susceptibility is given by

<n'<EF>>2 n"(Ep)

- n(Ep)




4.2

4.3
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where n, n', and n” are the density of states and their derivatives at the Fermi
surface. Show that in this case, for free electrons this expression is reduced

to
2 2
7 (kT
X(T) ~ Xo [1 1 (E_F>

Pauli Susceptibility (2). The spin susceptibility of an electron gas at
T = 0 may be discussed in the following way: let

be the moment up and moment down electron concentrations, respectively.

(a) Show that in a magnetic field B the total energy of the ‘moment up’
band in the model of the free-electron gas is

Ey = Ey(1+ ¢ = inuB(1+¢)

where E; = (3)nEp. Find an analogous expression for E|.

(b) Minimize E,y, = E; + E| in relation to ¢ and solve for ¢ in the
approximation ¢ < 1. Show that the magnetization is given by
M = 3nu}B/2EF.

Stoner Criterion for Ferromagnetism. Show that the Stoner criterion
given by Eq. (4.29) is equivalent to that of Eq. (4.43).

Ferromagnetism of Conduction Electrons. The effect of the exchange
interaction among conduction electrons may be approximated, assuming
that the electrons with parallel spins interact among themselves with energy
—V, with ¥ > 0, and electrons with antiparallel spin do not interact. Use
the results of the exercise 4.2 and show that the energy of the moment up
subband is given by

Ey = E(1+ ()7 —gvn*(1 +¢)? —fuB(1 + ()
(a) Find a similar expression for E|.

(b) Minimize the total energy and show that the magnetization is

3 2
2EF—§V}’I

that is, the interaction increases the susceptibility.
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(c) Show that with B =0 the total energy is unstable to { =0 when
V > 4FE;/3n. If this condition is satisfied, a ferromagnetic state
(¢ £ 0) will have a lower energy than the paramagnetic state. Since
¢ <« 1, this is a sufficient condition for ferromagnetism, but it may not
be necessary.

4.5 Density of States of a Free Electron Gas. Show that a gas of free electrons
contained in a volume V has a density of states given by Eq. (4.1).



THE MAGNETIZATION
CURVE

The magnetic characterization of materials is done primarily from the graph of
their magnetization M as a function of the intensity of the external magnetic field
H. This is their magnetization curve, or M—H curve. From the M—H (or B-H)
plot, many important parameters of the magnetic material can be measured;
some of them are defined in Section 5.5, and include the saturation magnetiza-
tion, coercivity, and retentivity.

The magnetic materials present a large diversity of shapes of magnetization
curves; these reflect complex phenomena that take place in the materials, such as
the motion of domain walls, the rotation of domains, and changes in the
direction of magnetization. Before discussing some of these processes, we will
examine the shapes of the magnetization curves of some idealized materials.

5.1 IDEAL TYPES OF MAGNETIC MATERIALS

We will consider four types of ideal materials that, under the influence of
magnetic fields, approximate the behavior of a large range of real materials. It
is instructive to discuss the shapes of the M—H curves for these materials. It is
certainly more rewarding to start with these, rather than with the more complex
real magnetic materials.

We may describe all known materials, in an approximate way, from four
classes of ideal materials (Herrmann 1991): (1) the ideal nonmagnetic materials,
(2) the ideal magnetically hard materials, (3) the ideal magnetically soft magnetic
materials, and (4) the ideal diamagnet.

115
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Figure 5.1 Magnetization curve of a magnetized sample of an ideal hard magnetic material.
[Reprinted from F. Herrmann, Am. J. Phys. 59, 448 (1991).]

In the ideal nonmagnetic materials, the application of an external field does
not result in any magnetization. The magnetization is zero for any value of H,
and the curve of magnetization versus field coincides with the axis of H.
Paramagnetic and diamagnetic materials may be identified in some circum-
stances with these ideal nonmagnetic materials. For example, when considering
the magnetization of a material containing a mixture of phases, we may take the
magnetization of paramagnetic or diamagnetic impurities as zero; they are then
identified with this ideal nonmagnetic material.

In the ideal hard magnetic material, the magnetization is not affected by the
external field H; it remains constant for any value of H. This is the property that
makes the hard magnetic materials useful for the manufacture of permanent
magnets. The magnetization curve of a magnetized sample of such material is a
horizontal line, parallel to the H axis (Fig. 5.1); this ideal behavior is inspired in
the relatively flat magnetization curve of hard magnetic materials (see also
Section 5.5). In the ideal hard magnetic material, in opposition to the soft
magnetic material, the external field penetrates completely the sample: H;,, =~ H
(see Chapter 1).

In the soft magnetic material, the magnetization increases rapidly as the
external magnetic field is increased. In the limit of an ideal soft magnetic
material, the magnetization curve is a vertical straight line that coincides with
the M axis (Fig. 5.2); the ideal soft magnetic material is a medium that can be
magnetized with an arbitrarily small magnetic field intensity. If the geometry is
such that the demagnetizing factor N, # 0, the external magnetic field is
completely shielded, so that the internal field H is zero. Therefore in these
ideal materials the magnetic fields do not penetrate the samples; this effect is the
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Figure 5.2 Magnetization curve of an ideal soft magnetic material.

result of the arrangement of magnetic dipoles at the surface of the sample, in such
a way that its interior is completely shielded from the influence of the external
fields. For their ability to impede the penetration of external magnetic fields, the
magnetically soft materials are very useful, among other things, as magnetic
shields.

These ideal materials are the magnetic analogs of perfect electric conductors,
which do not allow the penetration of electric lines of force in their interior
(Fig. 5.3). The lines of force outside the ideal soft material are equivalent to those
that would be observed in the presence of an opposite magnetic pole, located
inside the material.

The ideal diamagnetic material has zero induction B for any value of applied
external magnetic field H. Since B remains zero as H increases, |M| has to

(a) (b)

Figure 5.3 (a) Magnetic north pole near the surface of an ideal soft magnetic material, and
(b) positive charge near the surface of an electric conductor.
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Figure 54 M — H curve for an ideal diamagnet; the magnetization varies linearly with H,
corresponding to a susceptibility y = —1.

increase at the same rate to compensate [from Eq. (1.5)], and the susceptibility
X = M/H is equal to —1. Since B = yH, in this ideal material the magnetic
permeability p has a value of zero. The magnetization curve for an ideal
diamagnet is shown in Fig. 5.4. Superconductors behave like ideal diamagnets,
for applied fields of magnitude smaller than the critical field H, (or smaller than
H_, in the case of type II superconductors). The lines of force of the field H (or B)

(@) b

Figure 5.5 (a) North magnetic pole near a superconducting surface (ideal diamagnetic material);
(b) same, showing the equivalent magnetic pole inside the material. [Reprinted from F. Herrmann,
Am. J. Phys. 59, 448 (1991).]
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cannot penetrate this material. However, differently from what occurs in the
magnetically soft material, the shielding mechanism involves the presence of
electric currents at the surface, instead of magnetic poles. The lines of force of H
are parallel to the surface (Fig. 5.5); the effect of the ideal diamagnetic material
on the lines of force is equivalent to that of a magnetic pole of the same polarity,
located inside the material.

5.2 CONTRIBUTIONS TO THE ENERGY IN MAGNETIC MATERIALS

Inside a magnetic material, the magnetic moments are subject to several
interactions (Kittel 1949), such as (1) the magnetostatic energy, that is, the
magnetic energy in the demagnetizing field; (2) the magnetic anisotropy; (3) the
exchange interaction, responsible for the magnetic order; and (4) the magneto-
elastic interaction, relevant in the phenomenon of magnetostriction. We willnow
focus on these different terms for the energy inside the magnetic domains.

5.2.1 Magnetostatic Energy

We can consider a magnetic dipole as formed by two fictitious entities called
magnetic poles, of magnetic strengths +p and —p, separated by a distance d; the
pole strength p is measured in amperes meter (SI). Two such poles, +p(r;) and
—p(ry), separated by a distance » = |r; — r,|, apply on one another a force given
by Coulomb’s law

F=2"2= (5.1

where y is the vacuum permeability, whose value is o = 47 - 10~ H/m. The
force on each pole is —dU /dr, where U is the potential due to the other pole:

U=l (5.2)

4 r

The force that acts on a pole in an applied field H is F = uopH. The magnetic
dipole moment of the pair of poles p, separated by a distance r is m = pr.

We can calculate the work necessary to form a magnetic dipole by separating
these two poles for a distance d; this work is identical to the energy required to
magnetize a bar of unit section:

d d M
/dW :/ F(r)dr = Ho/ pH dr = uo/ H dM (5.3)
0 0 0

One can thus compute with this integral the work necessary to magnetize
an originally unmagnetized sample, which is measured by the area between the
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4

M

0 H

Figure 5.6 Area that measures the work required to magnetize a sample.

curve M (H)—H and the M axis, in Fig. 5.6; this work is converted into potential
energy and heat.

If we vary the applied field in such a way as to produce a full magnetization
loop (see Section 5.5), we return to the same point in the A — H diagram, and the
variation in potential energy is zero. The area of the loop then represents the
energy dissipated as heat—known as the hysteresis loss.

The magnetostatic energy is the energy of a magnetized material, in the
absence of an applied magnetic field; in this case, the only magnetic field that
acts is the demagnetizing field. The energy of the material in its demagnetizing
field is also called self-energy. A sample of magnetic material that is taken to
saturation by the application of a field H,,, of increasing amplitude will, in
general, keep a certain magnetization as it is removed from the field.

The graph of magnetization versus the internal field H (= H,,, + H,) will be
as shown in Fig. 5.7. At the maximum external field, the curve will reach the
point 4, and the magnetization will reach the saturation value M,. As the field is
lowered to zero, the magnetization will evolve to an equilibrium value M, (point
(); at this point, the only magnetic field on the sample will be the demagnetizing
field H;, an internal field along the negative H axis. This curve is called the
demagnetization curve, and point C is the intersection of the straight line
M = —H/N, with the curve for M. For each value of M, the corresponding
value of H given by this line is the demagnetizing field; if one adds this value of
|H,4| at each abscissa H of the curve, one recovers the curve of M — H,.

The magnetostatic energy E,,, per unit volume, at point C, may be computed
from Eq. (5.3), as the work done against the demagnetizing field. Since in this
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c

H, 0 H

Figure 5.7 Magnetization of a magnetized material versus internal field H; this is the
demagnetization curve. Point C corresponds to the equilibrium magnetization of the sample
under the action of the demagnetizing field H,. The marked area measures the magnetostatic
energy (divided by ).

case the energy is the self-energy, a factor of 1 appears:
MS M(’
Eno = o [ HydM o [ " Hyamt
0 M,
1 M Ho 2
= _E#OA Hd aM = —Z—Nd M(, (54)

where M is the saturation magnetization and M, is the equilibrium magnetiza-
tion, that is, the magnetization for zero external field. £, is given by the shaded
area in Fig. 5.7.

For a given geometry, and therefore a given N,, a permanent magnet will
always operate on the same line OC, called the load line. If, for example, the
demagnetizing curve is obtained with the sample at a higher temperature, the
magnetization will be smaller, but the working point (C") will still fail on the same
line OC. The modulus of the slope of the load line in the B x H curve
(= —B,,/H,) is called the permeance coefficient.

5.2.2 Magnetic Anisotropy

The shape of the curve of magnetization versus applied field H in ferromagnetic
single crystals depends on the direction of application of H. This can be seen in
Fig. 5.8 for crystals of iron and nickel. The origin of this effect lies in the fact that
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Figure 5.8 Dependence of the magnetization with the magnetic field H applied along different
crystal directions, for single crystals of Fe and Ni. The easy directions of magnetization are (100) for
Fe and (111) for Ni.

the magnetic moments inside the magnetic material do not point indifferently to
any direction in relation to the crystalline axes. There exists, for each crystal, a
preferred direction, known as the “direction of easy magnetization,” or the “easy
direction.”'. For example, in metallic iron, the easy direction is [100] (and the

' In many cases, as will be exemplified later on, the directions on a plane are equivalent, and instead of
an easy direction, one has an easy plane.
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equivalent directions are [010] and [001]). Applying a magnetic field along these
directions, one reaches the maximum magnetization (or saturation magnetiza-
tion) with lower values of H. The direction along which a multidomain sample is
easier to magnetize is the same direction of magnetization of the individual
undisturbed domains.

There are several contributions to the magnetic anisotropy; for instance, the
magnetocrystalline anisotropy (or crystal anisotropy) is the main source of
intrinsic anisotropy. The extrinsic contributions are related to the shape of the
samples, their state of mechanical stress, and so on (see Table 5.II).

The magnetocrystalline anisotropy energy (or crystal anisotropy energy)
arises mainly from the interaction of the electronic orbital angular momenta
with the crystalline field, that is, with the electric field at the site of the magnetic
ions.

The exchange interaction is isotropic, and therefore, cannot be responsible for
this effect; the microscopic origin of crystal anisotropy lies in the interaction of
the atomic orbital momentum with the charges of the lattice. The spin momen-
tum of the atoms, in its turn, is involved in this interaction through spin—orbit
coupling.

The magnetic anisotropy energy Ex per unit volume may be derived in the
case of a single-domain perfect crystal. This energy is written as a function of the
direction cosines «, oy, and as, defined in relation to the axes of the crystal.
Since the energy is only a function of the angle with the easy axis (and indifferent
to the direction along this axis), it must remain the same when we change the sign
of these cosines, and therefore, odd powers of the cosines cannot appear in its
expression. Also, the permutations among the cosines must leave the energy Eg
invariant.

The most general form that the energy may have in terms of the powers of the
direction cosines «; for a cubic crystal is

Eg = Ky + K (003 + 0305 + a3aq) + Ky(ayonas)® + - (5.5)
Substituting into Ey the direction cosines of the directions [100], [110], and [111],

symmetry directions in the cubic system, we obtain the expression of the energy
for these three directions:

Eyg0 = Ko (5.6a)
Ell() - KQ + K] /4 (56b)
E“] :KO +K1/3+K2/27 (560)

The anisotropy constants Kj, K;, and K, may then be derived from the areas
of the magnetization curves obtained for each direction, since the anisotropy
energy for each direction is given by the area between the curve and the M axis, as
in Fig. 5.6. The K values vary with temperature, tending to zero at the transition
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temperature T. The anisotropy constants are measured in units of joules per
cubic meter (SI), or ergs per cubic centimeter (CGS); the SI value is obtained by
multiplying the CGS value by 10~'. When K, can be neglected, K, defines the
direction of easy magnetization—for K; > 0, the easy direction is [100] (E,9y <
EllO < Elll); for negative K], the €asy direction is [111] (Elll < E110 < EIOO)'

For uniaxial crystals the description is simplified; for hexagonal crystals, for
example, the anisotropy energy is usually written in terms of the sine of the angle
0 between the ¢ axis and the direction of magnetization as

Ex = Ko+ K, sin” 0 + Kysin* 6 + - - - (5.7)

In many cases, K| > 0 and K, > —K|, and the anisotropy energy is a minimum
for 6 = 0; the magnetization points along the c axis of the crystal. This occurs, for
example, in cobalt metal, and in barium ferrite (BaFe;,0,9). In these cases the
anisotropy is uniaxial, since Ex does not depend on the angle with the directions
of the basal plane, in the hexagonal crystal. In the simplest situation, |K;| > |K;|,
and the anisotropy energy may be written (ignoring the constant term Kj):

Ex = K;sin’ @ (5.8)

Some values of the anisotropy constant K are given in Table 5.1.

We may, for certain purposes, assume that the uniaxial magnetic anisotropy is
due to the action of an equivalent field, H, (anisotropy field), with direction
equal to that of the easy magnetization axis. Its expression can be obtained
computing the value of the magnetic field that produces on the magnetization the
same torque of the anisotropy interaction, for small angles (sinf ~ §). The
torque 7 is MxB, and the energy is —M-B; therefore, for small angles,
dE = 7 df. For uniaxial anisotropy, for example, the condition of equal torque
is written, from Eq. (5.8), as a function of the saturation magnetization M :

/JJoHaMxe = 2K19 (59)
from what results, for the expression of the anisotropy field,

12K
H,=—"-!
l‘l’OMS

(5.10)

Table 5. Anisotropy constants K; of some cubic metals and intermetallic compounds at
room temperature

Crystal Fe Ni ErFe, DyFe, TbFe, HoFe,

K;(10° JTm™) 45 -5 -330 2100 ~7600 580
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One may show that this gives also the magnitude of the external magnetic field
that produces saturation when applied in a direction perpendicular to the axis of
easy magnetization.

The shape of a sample affects its magnetic anisotropy energy. As we have seen
in Section 1.2, the demagnetizing field depends on the shape of the sample, and
on the direction of the applied field. The demagnetizing field is smaller along the
longer dimension of the sample, and larger in the opposite case. For this reason,
if one wants to induce the appearance of an internal magnetic field inside a given
sample, a less intense field is required if applied along a larger dimension. In
other words, the direction of larger dimension is an easy axis of magnetization, in
the cases where this easy axis is determined by shape anisotropy.

To obtain the expression for the shape anisotropy energy, we use the
magnetostatic energy, —(u9/2)M - Hy [from Eq. (5.4)]. The shape anisotropy
energy for an ellipsoid of major axis ¢ and minor axes @ = b can be computed by
projecting the components of the magnetization M along the three axes. The sum
of these contributions is

Ex = BN + 52 (N, — No)MPsin’ 6 (5.11)

where 6 is the angle between the ¢ axis and the direction of magnetization, and the
N terms are the corresponding demagnetizing factors (Fig. 5.9).

In the case of a spherical sample, a=b=¢, N,=N,, and the shape
anisotropy energy is

EKz%NMZ:%MZ (5.12)

where we have used N = % for the sphere. Thus, in the case of the sphere, the
shape anisotropy energy is not zero, but it is isotropic; that is, it does not depend
ond.

The expression for a bidimensional magnetic sample, applicable to a magnetic
thin film, can be obtained from Eq. (5.11), in the limit of a flat oblate ellipsoid. If

Figure 5.9 Sample of ellipsoidal shape with magnetization along a direction forming an angle 8
with the major axis.
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the length of the ¢ axis tends to zero, then N, — 1, N, — 0, and we obtain
(ignoring a term that does not contain 6)

—%Mz sin’ (5.13)

Ex =
where 8 is now the angle formed between M and the normal to the plane of the
sample (Fig. 5.10).

Equation (5.13) shows that, in terms of shape anisotropy, any direction on the
plane is an easy direction—we may then speak of an easy plane; this equation
can be seen as describing a form of uniaxial anisotropy [Eq. (5.8)], with uniaxial
anisotropy constant K, = —(uo/2)M*.

In thin films, the breaking of local symmetry associated with the presence of
the interface gives origin to another contribution, the magnetic surface aniso-
tropy (Néel 1954), which amounts to a term ¢ = K, cos” 6 added to the surface
energy. This corresponds to an anisotropy energy per volume

1
E, =K, cos® 0 (5.14)

where K is called out of plane surface anisotropy constant, and d is the thickness
of the film (Gradman 1993); X, is in the range 0.1—1.0 x 107 J m 2.

5.2.3 Exchange Interaction

The interaction between the atomic spins responsible for the establishment of

a

Figure 5.10 Planar sample with magnetization along a direction forming an angle ¢ with the
normal.
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magnetic order is the exchange interaction, an interaction of electrical origin (see
Chapter 3). It may be written, for a pair of neighbor atoms, as a function of their
spin operators S; and S; [Eq. (3.25)]

7-{exch = _2«781' : Sj (515)
where J is the exchange parameter. We can therefore write in approximate form,

for the exchange energy of a pair of atoms of spin § in a ferromagnetic material,
as a function of the angle ¢ between the spins:

EP = —278%cos ¢ (5.16)
Expanding cos ¢:
e
cos¢p =1 2—|—24 (5.17)

Taking into account the terms up to second order and substituting into the
expression of E,,,, we obtain, neglecting the term that does not depend on ¢:

EP — 78247 (5.18)

exch ™

For a one-dimensional chain of N 4 1 neighbor atoms, the exchange energy is
IR 2
Een =TS 4; (5.19)
i
where the sum is made on the N pairs of nearest neighbors.

5.2.4 Magnetoelastic Energy and Magnetostriction

A solid under tension has an elastic energy that is expressed as a function of the
strains ¢;; this notation represents a strain arising from a force applied in the
direction along the axis i, to a surface of normal in the direction parailel to the j
axis. In the case of a magnetic material, the elastic energy has an additional term
that results from the interaction between the magnetization and the strains; this
is the magnetoelastic energy. Its expression may be derived through the
computation of the anisotropy energy in the presence of the stresses (Kittel
1949). The magnetoelastic energy is the contribution to the anisotropy energy
that arises in a solid under stress.

The stress o at a point P is defined as the force divided by the area AF/AA4 in
the limitas A4 — 0. A solid body under the effect of a stress o undergoes a strain
€. The strain e is dimensionless, and is given by the relative change in length (6/1).
Within certain limits, this deformation is linear, and the strain is proportional to
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the stress o (an empirical result known as Hooke’s law):

(5.20)

x| Q

where E is Young’s modulus.

A solid sample under tension along a given direction also reduces its
transverse dimension, or width wy, and the Poisson ratio v (dimensionless) is
defined from the variation éw of this dimension:

w ol
Ty 5.21
Wy v ) ( )

For most materials the Poisson ratio has a value between 0.1 and 0.3.
Hooke’s law can be rewritten in terms of the components ¢;; of the strain and

o;; of the stress (Landau and Lifshitz 1959):

O — V(o + O2z)

e = . (5.22)
1 .
T ) (52

The elastic energy per unit volume is given in the cubic system by (Landau and
Lifshitz 1959)

2 2 2 2 2 2
Eel = %Cll (exx + €yy + 6zz) + %044(€xy + €yz + 6zx)
+c12(eyy€zz + €xx€r T 6xxeyy) (524)
where the ¢;; are the elastic moduli.

The magnetoelastic energy may be obtained expanding in Taylor series the
expression of the anisotropy energy [Eq. (5.5)], as a function of the strains ¢;:

OE
Ex = Eg(0) + Z(ﬁ)og 4. (5.25)
y

The anisotropy energy is then a sum of a term for zero strain—the anisotropy
energy proper—and additional terms that involve the strains ¢;. These terms of
the expansion constitute the magnetoelastic energy Eyg:

Ex = Ex(0) + Eme (5.26)

Expanding the series, and using the expression of Ex for an unstrained crystal
[Eq. (5.5)], we obtain the following equation for the magnetoelastic energy in a
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cubic crystal (Kittel 1949):
EME = Bl (a%exx + agéyy + Oé%EZZ) + BZ(ala26xy + 36y, + a3a1€zx) (527)

The B factors are known as magnetoelastic coupling constants; the « terms are the
direction cosines.

The equilibrium configurations of a magnetized cubic crystalline solid are
given by the tensor of strains ¢; that minimizes the total energy, which is
expressed by [using the second term of Eqs. (5.5), and Egs. (5.24) and (5.27)]:

E=Ex+Ey+Eve=
K(a3a3 + a3 + odad)
+ %Cll(ﬁix + eiy + 632) + %044(63@ + 6}27 + 63,\')
+ ClZ(Eyyezz + €xx€z 6xxeyy)
+ Bl (a%éxx + Ol%Eyy + Q%EZZ)

+ BZ (a1a2€xy + 03¢y, + Ot3a162x) (528)

The solutions are of the form €; = €;(K, By, By, Cppy)-

A sample of magnetic material changes its dimensions as it is magnetized; this
phenomenon is called magnetostriction. In more general terms, magnetostriction
is the occurrence of variations of the mechanical deformation of a magnetic
sample due to changes in the degree of magnetization, or in the direction of
magnetization. Materials have positive magnetostriction when they exhibit a
linear expansion as they are magnetized (e.g., the alloy Permalloy); and negative
magnetostriction, in the opposite situation (e.g., nickel metal). Its microscopic
origin involves the interaction of the orbital atomic moment with the electric
charges in the crystalline lattice (the crystal field).

Magnetostriction is defined quantitatively as the relative linear deformation

8l

A==
l

(5.29)

where 6/ = [ — [, is the variation in the linear dimension / of the sample.

This effect is very small; A is normally of the order of 107 to 107%. The
magnetostriction A has the same dimension as the strains ¢ caused by a
mechanical tension. Thus, a crystal of a ferromagnetic material that is perfectly
cubic above the ordering temperature 7~ will present a small distortion when
cooled below this temperature.

There exists also the inverse magnetostrictive effect, that is, the effect of the
change in the magnetization through the action of an applied stress. Magneto-
striction is also observed when a magnetic field is applied to a magnetized sample
(called in this case forced magnetostriction).
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Table 5.1 Saturation magnetostriction of some
polycrystalline materials, at room temperature

Material A (x10%
Ni =33
Co —-62
Fe -9
NigyFeso (Permailoy) +25
Fe304 +4O
TbFe, +1753

The magnetostriction constants usually quoted are the saturation magneto-
striction constants ), specifically, the values of 6//1, for samples taken from the
unmagnetized state to magnetic saturation. Some values of )\, for polycrystalline
materials at room temperature are shown in Table 5.II. The magnetostriction
constants fall with increasing temperature, tending to zero at the Curie
temperature.

Let us assume a sample of cubic crystal structure that changes from a
demagnetized state to a state of magnetic saturation. Its saturation magneto-
striction ), along a direction defined by the direction cosines 3, 5, and 5,
relative to the crystal axes, is (e.g., Kittel 1949):

(e, B) = %)\loo(a%ﬂ% + a3 + 36 — %)
+3>\111 (061042,31,32 + a2a3ﬂzﬁ3 + a3a1,63,61) (530)

where oy, oy, and o are the direction cosines of the direction of magnetization;
Ago and Ay; are the saturation magnetostrictions along the directions [100]
and [111], and are related to the magnetoelastic coupling constants (B, and B,),
more fundamental quantities that appear in Eq. (5.27), and to the elastic
moduli ¢;;.

Calling 8 the angle between the direction [3; 3,3;] along which the magneto-
striction is being measured, and the magnetic field (parallel to [o; a3)]), we have

cost = a1 By + arfh + a3f; (5.31)

If we make the approximation of considering the magnetostriction isotropic,
we will then have A\jgp = Aj1; = ;. Substituting into Eq. (5.30), the magneto-
striction becomes

A(B) =3\ (cos’0 - 1) (5.32)

which can be written, substituting cos” § = 1 — sin® § and neglecting the constant
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term:

M) = —2),sin? 9 (5.33)
2

This expression for the magnetostriction does not depend on the crystal
directions, only on the angle between the magnetization and the direction along
which the magnetostriction is measured.

The relation between magnetostriction and magnetoelastic energy can be seen
for a solid of length /; submitted to a tensile stress o, in a direction forming an
angle 6 with the magnetization, its dimension is altered by /(). The increase in
energy (per volume) is the work —o dl(#) /1, done by the stress o (noting that o is
equivalent to a negative pressure):

dE = —a@ = —o d\(6) (5.34)
0

For a solid magnetized to saturation, the total energy is the work done as the
solid is deformed by magnetostriction; this is the magnetoelastic energy. There-
fore, in the case of isotropic magnetostriction in a cubic crystal submitted to a
stress o, the magnetoelastic energy is written [using Eqgs. (5.33) and (5.34)]:

Eyg = 3)\0sin 0 (5.35)
Comparing thus with Eq. (5.8), we see that this expression has the form of an
anisotropy energy. We can conclude that the magnetostriction, through the

magnetoelastic energy, is equivalent to an uniaxial anisotropy, with anisotropy
constant

K, =3\o (5.36)
The different kinds of contributions to magnetic anisotropy are shown in
Table 5.1I11.
For the magnetostriction measured in the same direction as the applied field,
a; = f3;, and substituting into Eq. (5.30), we obtain

A(@) =3o(ad + 03 + af — 1) + 311 (afa3 + 503 + Aja) (5.37)

where the «; are the direction cosines of this direction.
Using the expansion

(i + a5 +03)’ = (af + 03+ af) + 2(afes + ajol +ajal) =1 (5.38)
we simplify and obtain

As(a) = Ao + 311 — Moo)(edas + a3a3 + adal) (5.39)
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Table 5-lll Axial anisotropy constants and anisotropy mechanisms

Anisotropy Mechanism Uniaxial Constant
Crystalline Crystal field K, =K,

Shape Magnetostatic K, = K, = 5o/2(N, — N)M*
Stress Magnetoelastic K, =K,=3)\0o

Neéel Surface K, = K;

Source: Based on B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, Reading, MA,
1972, p. 272.

which gives the saturation magnetostriction of a cubic crystal measured along
the same direction as the applied magnetic field, of direction cosines «;.

In systems with weak crystalline anisotropy, the anisotropy term derived from
the magnetoelastic energy may dominate. The definition of the easy direction of
magnetization will then be determined by the stress . The local effect of the
application of a stress to a demagnetized sample will be the growth of domains in
the preferred directions, both parallel and antiparallel (for A, > 0). The magne-
tization will remain zero, but there will be motion of domain walls. If the
crystalline anisotropy is very low, the walls remaining after the application of the
tension may be removed with the application of a negligible magnetic field.

Depending on the shape, a magnetized sample may undergo a deformation
due to the tendency to minimize the magnetoelastic energy (shape effect); this
effect is different from the action of magnetostriction (see Cullity 1972).

Measurements of anisotropy energies or magnetostriction in polycrystalline
samples yield average values of these quantities. For example, the saturation
magnetostriction of a cubic random polycrystal can be obtained by averaging
Eq. (5.30) and is given by

A = o0 + i (5.40)

Polycrystals in which the individual crystallites show preferred orientation are
said to present texture, and their magnetic properties cannot be described by
simple expressions such as Eq. (5.40).

5.3 MAGNETIC DOMAINS

Samples of ferromagnetic materials seldom have a nonzero total magnetic
moment; that is, they do not behave as magnetized objects. This is the case,
for example, for an ordinary iron object at room temperature. Why are all
samples of ferromagnetic materials not magnets? The explanation is that the
ferromagnetic samples are divided into small regions, called domains, each one
with its magnetization pointing along a different direction, in such a way that the
resulting magnetic moment (and the average magnetization) remains nearly
zero. Inside each domain the magnetization has its saturation value.
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Figure 5.11 Division of a single magnetic domain, minimizing the magnetostatic energy.

Domains are created because their existence reduces the magnetostatic
energy. This can be illustrated in the case of a sample of rectangular cross
section (Fig. 5.11); as the original single domain splits, the magnetic energy of the
system goes down. This energy is reduced even more with the formation of
closure domains (not shown), with magnetization perpendicular to that of the
other domains.

Between two adjacent magnetic domains with magnetization directions
differing by an angle 4, there is an intermediate region of finite width, known
as a domain wall. If a 180° domain wall has a thickness of N atoms, each one with
spin S, the average angle between neighbor spins is 7/N, and the energy per pair
of neighborsis EXoy = JS*(n/N)? [from Eq. (5.18)]. A line of atoms with N + 1
neighbors perpendicular to the domain wall has an energy

Eexeh = N. Eeii'ﬁ = N

(5.41)
The condition for the energy E.,., to be minimum is that N grows indefinitely;
however, if N increases, the anisotropy energy increases, since the number of
spins not aligned to the direction of easy magnetization also increases. If the
separation between the atoms is a, a unit length of the domain wall crosses 1/a
lines of atoms; a unit area of wall is crossed by 1/ a* lines. The exchange energy
per unit area is then

, IS

o (5.42)

€exch = T

The anisotropy energy per unit volume of a uniaxial crystal is Ex = K sin” 6
[Eq. (5.8)]. Since a wall of unit area has a volume Na, the anisotropy energy per
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unit area is
ex = Ksin® Na ~ KNa (5.43)

The condition that minimizes the total energy per unit area e = €gen + €x
(exchange plus anisotropy) is given by

and the wall that satisfies this condition has a number of atoms given by

S /T
N = =7 \/; (5.45)

Therefore the thickness of this wall is

S |J

The domain wall thickness is therefore directly proportional to /7 and
inversely proportional to VK.
The subdivision into domains does not proceed indefinitely, again for energy

Figure 5.12 Magnetic moments inside a 180° domain wall (Bloch wall).
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considerations. The formation of interfaces (walls) between the domains leads to
an increase in energy due to magnetic anisotropy, and to the exchange inter-
action. This occurs because the anisotropy energy is minimum for a direction
parallel to the original direction of magnetization of the domains, while the
exchange energy is minimum for a parallel alignment of the moments. The width
of the domain wall is defined by the competition between the anisotropy energy
and the exchange energy; the former is reduced for narrow walls and the latter,
for thick walls. As example of domain wall widths, we have 50 nm for the 90°
domain walls in iron, and 15 nm for the 180° walls in cobalt.

The domain walls are also called Bloch walls, although this denomination is
used more specifically for a type of wall in which the magnetization turns outside
the plane of the magnetizations of the neighbor domains (Fig. 5.12). The wall
whose moments turn in the same plane of the domain moments is called a Néel
wall.

Our discussion of the formation of magnetic domains is applicable to single
crystalline magnetic samples. For polycrystals, the individual crystals (or grains)
normally present a multidomain structure, if their sizes are larger than a critical
dimension, given roughly by Eq. (5.46) (see Coey 1996).

5.4 REVERSIBLE AND IRREVERSIBLE EFFECTS IN THE
MAGNETIZATION

A small external magnetic field applied to a single domain along an arbitrary
direction produces a torque that tends to turn the magnetic moments, causing
them to deviate from the direction of easy magnetization. This effect produces a
reversible increase of the component of the magnetization in the direction of the
applied field. The angle of rotation, and consequently the increase in the
magnetization (or the susceptibility), depends on the competition between the
value of the anisotropy field and the intensity of the external field. For a field
applied according to an angle 6, with the direction of uniaxial anisotropy, and
forming an angle # with the magnetization, the energy will be

E = —K, cos*(0 — 8y) — pioMH cos 0 (5.47)

where K, is the parameter of uniaxial anisotropy.

For larger magnetic fields applied to a single-domain particle, irreversible
processes occur, arising from the irreversible rotation of the magnetization. For
example, the magnetization of the single domain in Fig 5.13 rotates from its
original direction through the action of the field H. As the intensity of H
increases, M eventually flips to a direction opposite to the positive ¢ axis, shown
in the figure. If, after that, H is reduced, the magnetization does not return to its
original direction, but instead aligns with —¢; this change in magnetization is
therefore irreversible.
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Figure5.13 Single domain rotating its direction of magnetization under an applied magnetic field,
in an irreversible process.

In real multidomain crystals, the energy of a domain wall is dependent on its
position, due to the interaction with impurities and defects. This dependence
may be, for example, as shown in Fig. 5.14. Small wall displacements around the
position x = sy, shown in the figure, are reversible, and this makes the corre-
sponding variations of the magnetization also reversible.

The interaction of a domain wall with defects or impurities hinders its motion;
a domain wall that is immobilized by this interaction is said to be pinned. If the
edge of a domain wall is pinned, but its surface is allowed to move, another form
of reversible magnetization results from this motion under the external field.
With an increase in the H field, this wall deforms as a membrane under pressure.
With this deformation, or bowing, its area, and consequently, its energy, also
increase.

In the displacement As of a 180° domain wall, the magnetization of the

S, S, s, S

Figure 5.14 Domain wall energy as a function of wall position in a real crystal.
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sample is increased by AM; = 2M, As. The increase in magnetic energy, Eq.
(5.47), is:

AFE = 2ugM HAscos 6 (5.48)

and the force per unit area, or pressure, is given, in the limit as As — 0 by:

E
%— = —2uoM H cos 6 (5.49)
A)

The most important irreversible magnetization mechanism in magnetically
ordered solids is related to the irreversible displacement of domain walls. This
may be illustrated by Fig. 5.14, which shows the action of a magnetic field
pushing the wall, for example, from the position s, to s;. If at s; the derivative of
the energy reaches a local maximum, an increase in field H will make the wall
jump to s,. The wall stops at s, because at this point the equivalent force (or
pressure) exerted by H is again balanced by the restoring force, which is
proportional to the derivative of the energy at the point s, [Eq. (5.49)]. If,
from this moment onward, the field H is canceled, the wall will move to the
nearest minimum, and consequently the magnetization will not return to the
original value corresponding to the point s;.

The jumps of the domain walls (e.g., from s to s, in Fig. 5.14) can be detected
through the discrete changes in magnetic flux through a coil wound around the
sample. The discontinuous change in magnetization with constantly increasing
H is known as the Barkhausen effect, and the steps in the induced electromotive
force (e.m.f.) are called Barkhausen noise.

5.5 THE MAGNETIZATION PROCESS

The magnetic characterization of a sample can be made by plotting its magne-
tization in a graph, against the applied field H, generally in the form of a (1)
virgin curve and (2) magnetization curve or hysteresis cycle. The virgin curve is
the curve of magnetization versus H for an originally unmagnetized sample. The
hysteresis cycle or hysteresis loop is the full magnetization curve, traced from
H = Hay to H = —Hy,, and back (Fig. 5.15).

The variation of the magnetization of a material as a function of the intensity
of the applied field H is a complex phenomenon that reflects the action of several
microscopic mechanisms. A sample of magnetic material is formed, in general,
by an ensemble of magnetic domains that may, under the influence of the applied
field, change volume, or turn their magnetization directions away from the easy
directions. The shape of the magnetization curve is affected by the presence of
local impurities, defects, and grain boundaries; these are relevant for the
appearance of domains with opposite magnetization (nucleation), for the
pinning of domain walls, and so on.
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Figure 5.15 Initial (or virgin) magnetization curve (OABC) and magnetization curve, or hysteresis
loop (CDEFGC). The curve BD'E’ is followed if H is decreased from a point below saturation
(corresponding to point C).

Starting from an unmagnetized sample, the magnetization curve, or M—H
loop, has the general shape shown in Fig. 5.15, where we may distinguish three
different regions. In the OA region, the magnetization increases slowly with the
application of the external magnetic field; in the region 4B this occurs more
rapidly, and in the region BC the magnetization tends to a value of saturation. If
the applied field does not grow until the magnetization reaches its maximum
value, but instead, starts to decrease after reaching an intermediate value, the
magnetization traces a curve that is, in general, different from the curve OC.
Only for small fields, and consequently small magnetizations, this effect is not
observed; for example, the curve O4 may be traced in two senses: with increasing
or decreasing field. If the magnetic field increases until the magnetization reaches
the point B (Fig. 5.16), and is later reduced, the magnetization falls, for example,
until B'; if H starts to increase again from this point, the magnetization follows
the closed curve limited by B and B'. Curves of this type are called minor loops
(Fig. 5.16).

From the virgin B x H curve (Fig. 5.17), we can evaluate the initial magnetic
permeability p; (the derivative of the curve at the origin) and the maximum
permeability ,, (tangent of the largest angle formed by the straight line that is
tangent to the curve and passes through the origin).

The complete magnetization curve is traced when the field H increases up to
H.x, decreases to — Hy,,,, and returns to the maximum value. Figure 5.15 shows
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0 H

Figure 5.16 Initial magnetization curve (OABC), showing minor loops (e.g., BB'B).

He,

1 >

0 H

Figure 5.17 Initial curve of magnetic induction B, showing the angles that define the maximum
permeability u., (= tan 6,,) and the initial permeability u; (= tan¥,).
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a typical magnetization curve with a value of H,, sufficient to reach the
saturation of the magnetization. Several aspects may be stressed in relation to
this curve: (1) as mentioned above, the decreasing field traces a curve that is
different from the initial (or virgin) curve OC; (2) when the field reaches the value
H = 0, the magnetization is not zero, but it has a finite value (OD, called the
retentivity), and (3) the field for which the magnetization reaches zero is a
negative field, whose modulus (OE) is called the coercive field (or coercivity).
When the M —H loop is traced without reaching the saturation magnetization,
the magnetization for zero field is called remanent magnetization (or remanence)
(OD' in Fig. 5.15), and the field for M = 0 is called the coercive force (OE' in
Fig. 5.15).

We can also describe the magnetic behavior of a sample through the graph of its
magnetic induction B versus field H (B—H curve). This curve is equivalent, but not
identical, to the M—H curve, because B and M are connected through Eq. (1.5):

B = uH = p1y(H + M) = By, + oM (5.50)

(we have assumed the internal field H = H.,,); y is the vacuum permeability and
 is the magnetic permeability of the medium. The polarization J is defined as
oM. The B—H curve differs from the M—H curve, since the former does not
present saturation; as H increases to the point of saturating M, the induction B
will still continue to increase linearly with H [from Eq. (5.50)]. It is usual to
distinguish the coercivity obtained from the curve of induction (3H,) from that
obtained from the magnetization curve, or from the polarization curve (; H,).

Note that the internal field H is in general a sum of the applied field H,, and
the demagnetizing field H, the latter depending on the shape of the sample, and
direction of the applied field. To obtain a M—H loop that is independent of these
factors, we should subtract from H,,, the quantity |H,|, thus obtaining a graph
of M versus H (the internal field).

The physical quantities whose values are obtained from the virgin magnetiza-
tion curve, and from the hysteresis curve, are listed in Table 5.IV.

Table 5.IV Magnetic parameters derived from the hysteresis curve (M—H) and from the
virgin magnetization curve (see Figs 5.15 and 5.17)

Unit Unit

Quantity Symbol Representation (SDH (CGS)
Saturation magnetization M ocC Am™! G
Coercivity, or coercive field H, OE Am™! Oe
Coercive force (without saturation) H, OF' Am™! Oe
Retentivity M, oD Am™ G
Remanence (without saturation) M, oD’ Am™! G
Maximum permeability (virgin curve) 7 tan (6,,) - -
Initial permeability (virgin curve) 1 tan(6;) - -

Energy product (BH ) max Im™ GOe
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As mentioned in Section 1.5, a magnetic material adequate for the construc-
tion of permanent magnets must have elevated values of the coercive field and of
the retentivity (or of the remanence); this reflects the fact that (1) a large
(negative) field is required to take the magnetically saturated assembly of
domains to the condition of zero net magnetization, and that (2) a high degree
of alignment of the domains remains when the external field is removed. These
favorable properties may be measured by a quantity known as the energy
product, (BH )., [see Eq. (1.17)], which is equal to the area of the largest
rectangle than can be inscribed in the second quadrant of the B—H curve.
Therefore, to optimize (BH )., @ magnetic material must have, in principle, the
maximum retentivity and the maximum coercivity.

The magnetic properties of some materials at room temperature, for different
degrees of magnetic hardness, are presented in Tables 5.V (soft magnetic
materials), 5.VI (intermediate magnetic materials), and S.VII (hard magnetic
materials); see Fig. 5.18 (see also Table 1.II and Fig. 1.15).

The fact that the magnetization follows two distinct curves, one for increasing
fields and another for decreasing fields, is called hysteresis; for this reason the
magnetization curve is also called hysteresis curve, or hysteresis loop. We can, under
special conditions, obtain a magnetization curve without hysteresis (anhysteretic).
For this, it is necessary to apply, for each value of H, a superposed oscillating
magnetic field of decreasing intensity, with an initial amplitude sufficiently large to
saturate the sample. The anhysteretic magnetization curve is traced by recording
the magnetization when this amplitude reaches zero, versus H.

The work necessary to change the magnetization of an element of volume of a
magnetic material, from M, to M,, under an applied field H, is given by

M,
W = H oM (5.51)

1

The integral between M, = 0 and M, = M| is a measure of the area between
the magnetization axis and the curve in Fig. 5.6. As we go through a full
hysteresis cycle, beginning with H = H_,,, and going back to this value, the
variation in potential energy must be zero, and therefore, the energy correspond-
ing to the area of the hysteresis curve is dissipated as heat. This energy converted
into heat is the hysteresis loss.

The variation of magnetization as a function of magnetic field H is the result of
several different processes operating in the sample. For small values of the field
(curve 04, Fig. 5.15), the magnetization increases mostly through reversible motion
of the walls, in such a way that the domains whose magnetization have projections
along the same direction of H increase their size at the expense of the others
(changing from Fig. 5.19a to Fig. 5.196). In this region the magnetization also
increases due to moment rotation inside the domains, against the anisotropy field.

For intermediate values of the field H, the magnetization increases via the
irreversible displacement of the domain walls (Fig. 5.19¢). In this process, the
saturation magnetization is reached; its value corresponds to the value of
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Table 5.V Properties of some soft magnetic materials

Saturation Saturation Coercivity Relative Electrical
Polarization Magnetostriction (DC) Permeability Resistivity
Main Elements besides Fe J = oM (T) (in 107%) (Am™ (x1073%) (1072 - cm)
Commercial Alloys (H =4mAcm™)*
72-83 Ni+ Mo, Cu, Cr 0.75-0.95 ~1 0.3-4 30-250 0.55-0.6
35-40 Ni 1.30-1.40 22-25 20-40 3-9 0.55-0.6
Other Special Alloys
6.5 Si 1.8 ~1 8-20 ~10 0.8
16 Al 0.8-0.9 15 2-5 4-8 1.45
Powder Core Materials (B=40mT)
80 Ni, Mo 0.5-0.85 Depends 10-100 30-250 > 10"
50 Ni 1.2 on alloy 200 30-150 > 10"
Amorphous Alloys (H=4mAm™
Fe78$i9B,3 1.55 27 8 1.37
CO74F€2MI’14Si]]B9 1.0 < 0.2 1.0 2 1.15
Nanocrystalline Alloys
Fe73_5Cu]Nb3Si,3_5B9 1.25 +2 1 100 1.35

Source: Reprinted from R. Boll, in Materials Science and Technology, K. H. J. Bushow, Ed., Vol. 3B, Part II, p. 439.
Copyright © 1994, Wiley-VCH Verlag, Weinheim. Reprinted by permission of John Wiley & Sons, Inc.

“For alloys with round loops.

b Alloys with round or fat loops, f/ = 50 Hz.
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Table 5.Vl Magnetic properties of some intermediate magnetic materials (or semihard
magnetic materials)®

~-Fe,0;  Fe,0;-Fe;04  Co-vy-Fe,0; CrO, Ba Ferrite

B, (T) 0.11 0.15 0.15 0.15 0.12
H.(kAm) 26 37 52 45 64

Source: Reprinted from J. Evetts, Ed., Concise Encyclopedia of Magnetic and Superconducting
Materials, Pergamon, London, 1992, p. 223, with permission from Elsevier Science.
¢ All examples are from magnetic recording materials.

Table 5.VIl Magnetic properties of some commercially available permanent magnet
materials

TC (BH)max Br JH(‘ BH(‘
Material CC) (K m3) T &kAm™")y (kAm™)
Ferroxdure (SrFe;;0p9) 450 28 0.39 275 265
Alnico 4 850 72 1.04 - 124
SmCos 720 130-180  0.8-0.91  1100-1500  600-670
Sm(CoFeCuZr), 800  200-240  0.95-1.15  600-1300 600-900

NdFeB (sintered magnet) 310 200-350 1.0-1.3 750-1500 600-850

Source: Reprinted from K. H. J. Bushow, in Materials Science and Technology, K. H. J. Bushow, Ed.,
Vol. 3B, Part I1, p. 475. Copyright ©1994, Wiley-VCH Verlag, Weinheim. Reprinted by permission
of John Wiley & Sons, Inc.

g 10 « rare-earth-
< - trans. metals
T © intermetallics
hard ferrites
10° |- recording media
metals
oL transition metal alloys

soft ferrites
permalloy
amorphous alloys
nanocrystalline alloys

I 1 | |
10° 10° 107 10°

K,(J/m®)

Figure 5.18 Graph of ranges of coercivity H, and of anisotropy constant K, for different types of
magnetic materials. [Reprinted from H. Kronmdiller, J. Mag. Mag. Mat. 140-144, 26 (1995), with
permission from Elsevier North-Holland, NY.]

1
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Figure 5.19 Schematic representation of the effect of an applied magnetic field on the domain
structure of a ferromagnetic material; (a) before application of the field; (b) with the applied field, the
domains with magnetization parallel to H increase at the expense of the other domains; (c) the
technical saturation of the sample, which becomes practically one single domain (d) for higher
fields, the magnetization rotates inside the domain. In ¢ and d the dotted squares represent
microscopic regions of the sample (not the domains).

the magnetization inside the domains at the temperature of the experiment; this
is called technical saturation. Finally, for high values of H, the increase in M
arises from (reversible) rotations of the magnetization of the domains, which
tend to align with H (Fig. 5.19d). The magnetization grows still further, through
the increase in the degree of alignment of the magnetic moments inside the
domains; this is called forced magnetization.

The shapes of the M—H curves are generally dependent on the direction of the
applied field H relative to the crystal axes, due to the effect of crystalline
anisotropy. This may be illustrated in an idealized sample with two magnetic
domains, uniaxial anisotropy, no irreversible effects in the magnetization and
high wall mobility. We also neglect shape anisotropy. If one applies a magnetic
field parallel to the anisotropy axis (Fig. 5.20a) the domain wall will move and
the magnetization will reach saturation for a negligible field. The M—H curve
will be as a shown in Fig. 5.205.
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Figure 5.20 (a) Sample of magnetic material with two domains, under the action a field H paraiiel
to the direction of easy magnetization; (b) shape of M—H curve; note the saturation for low fields.

If, on the other hand, the applied magnetic field H points along a
direction perpendicular to the anisotropy axis, the wall will not move, and the
magnetization will gradually turn inside the domains, as this field overcomes
the effect of the anisotropy field H,. The M~H curve will be a sloping
straight line, reaching saturation for the field H = H, (Figs. 5.21a and 5.2154).

It is instructive to follow the direction of magnetization of the domains
inside the material, at different points in the hysteresis curve. In the first place, it
should be noted that different domain configurations may correspond to the
same value of magnetization. The configurations are shown in Fig. 5.22. In
particular, for a null magnetization there is more than one possible configuration
of the domains; the ideal demagnetized state is usually taken as that in which the

() (b)

Figure 5.21 (a) Sample of magnetic material with two domains, under the action of a field H
perpendicular to the direction of easy magnetization; (b) Shape of M—H curve; note the gradual
increase of the magnetization, reaching saturation for H = H,.
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Figure5.22 Distribution of the directions of magnetization of the domains at different points of the

magnetization curve.

B A=M,

Figure 5.23 Magnetization curve for small values of magnetic field, known as the Rayleigh curve.
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volume of the sample is equally divided among the possible types of magnetic
domains.

The magnetization curves obtained with very low values of H (of the order of
100 Am~" or 1 Oe) have a special shape, called the Rayleigh curve (Fig. 5.23). The
magnetic permeability for small field intensity is a linear function of H and can
be written in the form

=g+ vH (5.52)

where y; is the initial permeability, which is also given by the tangent of the angle
of the straight line tangent at the origin of the curve of B versus H, and v is the
Rayleigh coefficient; these two quantities are characteristic of each material. The
magnetization curve as a function of H for low values of H [from (5.50)] is a
parabola, of the form

M = aH + bH* (5.53)

with a = (p; — po)/ o and b = v/py. The area limited by the hysteresis curve in
this case is proportional to H°.

As explained in the previous section, permanent magnet materials are hard
magnetic materials, with high retentivity M, (or high remanence) and high

HoH

A 4
<

(@) (b)

Figure 5.24 Hysteresis loops for an ideal permanent magnet material: (a) curve of M—H,
showing a square loop; (b) curve B — uyH, showing the square whose area is a measure of the
ideal energy product (BH)!™! (see text).
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coercivity H.. The single characteristic that best describes the suitability of a
given material for the use in permanent magnets is the maximum energy product
(BH)max~

An ideal permanent magnet material has a perfectly square M—H loop, which
means that its magnetization remains at the saturation level for any value of H,
from the maximum applied field to the coercive field (H,) (Fig. 5.24a). Therefore,
the magnetization at the remanence point (M,) has the same value of the
saturation magnetization M,. Drawing the hysteresis loop as B versus uoH
(Fig. 5.24b), one can use the same units in both axes (in tesla). For this ideal
magnet material, the graph in the second quadrant is a straight line connecting
the point (0, B,) to the point (uggH,, 0), since the only change in Bin this range of
magnetic field arises from the variation in H itself.

The maximum energy product (BH )., is the area of the square in the
hysteresis loop, plotted as B x poH (Fig 5.24b). From this curve, noting that
topH, = B, and B, = ugM, it is easy to estimate the value of the energy product
in this ideal case:

- M? B
(BH)&% = Noj‘fi = 4

(5.54)

This is therefore the upper theoretical limit for this quantity; for example, the
measured energy product for a sample of NdFeB with induction at remanence
B, =135Tis 320kJm™>, corresponding to approximately 90% of the value of
363 kI m™ predicted from the above expression.

Permanent magnet materials are frequently multiphase, or heterogeneous,
consisting of different components that have different magnetic properties, such
as magnetic hardness. Also, the domain structure is complicated by the presence
of both multidomain and single-domain grains. Therefore, the analyses of the
processes responsible for the shape of the hysteresis loops are correspondingly
more complex (see Givord 1996).

5.6 DYNAMIC EFFECTS IN THE MAGNETIZATION PROCESS

There is a class of magnetic phenomena associated with the time dependence of
the response to external applied magnetic fields. In the discussion of the
magnetization process, we have not yet considered the form of dependence of
H(1), assuming implicitly that at each moment the system is in equilibrium. In
this section we will briefly treat these phenomena, limiting our scope to time
effects observed in ferromagnetic materials. This restriction excludes some
important time effects observed, for example, in spin glasses.

These dynamic effects can be divided into aftereffects and resonances. The
application of a magnetic field H of sufficient intensity to take a sample
to magnetic saturation does not induce the instantaneous appearance of a
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magnetization M, for two main reasons; (1) for very short times, eddy currents
appear in the sample that oppose the growth of the induction B (or of M);
(2) because the several microscopic processes underlying the magnetization
process take finite characteristic times to be completed. The delay in the
growth of the magnetization due to this last cause is called magnetic aftereffect,
and may vary from a fraction of a second to many hours. In these processes we
will ignore time dependences associated with nonreversible causes, due to the
action of the magnetic fields, such as structural changes, or aging of the material.
In the case of Fe—C alloys, for example, the aftereffects were attributed to the
diffusion of carbon atoms that occupy interstitial sites, producing deformations
that change the energy of the domain walls and can lead to their displacement. A
thermal fluctuation aftereffect arises from the thermal fluctuation of the mag-
netization direction in small single-domain particles (or in pinned domain walls);
this is a strongly temperature-dependent process, the rate of change falling with
the temperature. This effect usually leads to a linear variation of the sample
magnetization with the logarithm of the time, and this property is known as
magnetic viscosity; it is expressed quantitatively as (see Givord 1996):
aM

S= i (5.55)

where M is the magnetization and ¢ is the time.
One of these time effects is the disaccommodation, which consists in the

H
0
time
M
0 L time

Figure5.25 The phenomenon of disaccommodation—the magnetic permeability decreases with
time, after the application of an oscillating magnetic field of decreasing amplitude.
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variation of the magnetic susceptibility (or of the permeability) of a material,
after the application of a magnetic field; in this case it is the magnetic response,
not the magnetization, that changes. It can be observed after the sample is
demagnetized through the action of an oscillating field of decreasing intensity
(Fig. 5.25). In ferrites this effect was attributed to changes in the magnetic
properties brought about by the migration of vacancies. In FeSi alloys this effect
arises from a linear ordering of atoms of the constituent elements.

Eddy currents appear each time a conducting sample is subjected to a time
varying magnetic field H(t). The variation of the magnetic flux ¢ = BA4 (A4 is the
area) creates an electromotive force e that produces currents in the material being
magnetized (Faraday law):

dp _ d(BA)

Cdt dt

(5.56)

The currents generate a magnetic field that opposes the rate of variation
d(BA)/dt of the flux (Lenz’s law); they have the effect, therefore, of hindering
the increase of the magnetization at the same rate of change as the external field
H(?). The eddy currents are proportional to the square of the frequency, and, of
course, inversely proportional to the electrical resistivity of the material. These
currents are more amplified yet in the domain walls. They are an important
source of energy loss inside magnetic materials, an effect that is particularly
relevant in power transformers.

The most important losses in ferromagnetic materials, however, are hysteresis
losses (Section 5.5); losses by microscopic eddy currents and by other mechan-
isms associated with irreversible processes contribute to these losses. At high
frequencies, on the other hand, domain wall motion is reduced, and the losses by
microscopic eddy currents dominate. The presence of hysteresis, of eddy
currents, and other mechanisms leads to the appearance, in an oscillating
magnetic field, of an imaginary term in the magnetic permeability and in the
magnetic susceptibility.

Under an oscillating magnetic field of angular frequency w, given by

H = Hye"' (5.57)

a retarded flux density B arises, with phase difference é:
B = Bye'“% (5.58)

and the magnetic permeability is given by

B 0 B "
b= = h = e (5.59)
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The permeability p can be written in complex form

p=p —ip (5.60)
where the normal permeability (in phase with H) is given by the real part of u:

y = %cos& (5.61)

and the out-of-phase part (the imaginary part), which is related to the dissipative
processes, is given by

f="siné (5.62)

The loss factor is given by the ratio

"

% = tan$ (5.63)

The magnetization process due to the increase in volume of the domains
cannot be instantaneous, since the walls move in a magnetic medium with a finite
velocity. Observations made in different materials record velocities between 1
and 10* cms™'. Although there is no displacement of mass in the motion of a
domain wall, there is inertia against this motion, which results from the torques
applied by the angular momenta associated with the atomic magnetic moments.

The variation in the energy of a domain wall of area 4, under the influence of a
field H that produces a displacement x, is

E = -2pyAMHx (5.64)
and the force per unit area is
1\ dE
=—|—)——=2uM,H .

The equation of motion of the wall can now be written

d? d
I;C + ﬁ:g +ax = 2ugM.H (5.66)

The effective mass of the wall is m = pgo/27*4’, where o is the energy per unit
area, vy is the gyromagnetic ratio of the spins, and A’ is the exchange stiffness, a
coefficient proportional to the exchange energy (4’ = 7S%/a, where a is the
interatomic spacing).
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Let us assume magnetizations pointing along the axes x and —x in two
adjacent domains separated by a 180° wall, with the normal to the domain wall in
the z direction (Fig. 5.26). A field H = Hi will produce a torque on the moments
localized in the wall, that will push them out of the planes of H and M, that is,
upwards, as shown in Fig. 5.26. The z component of the magnetization in the
wall will create a demagnetizing field:

Hy=—N,M, (5.67)

and its action on the moments will be perpendicular to z, and will cause the
moments to turn in the plane xy. It is this effect that leads to the displacement of
the wall; the final result is the volume increase of the domains with magnetization
parallel to H, and a reduction of the volume of the antiparallel domains.
Several resonance phenomena are observed in solids submitted to oscillating
electromagnetic fields; in general, their observation requires the simultaneous

Ay
)

Moving

' Standing

y

y

Figure 5.26 Spin structure inside a domain wall, shown in two configurations: in the stationary
state, and moving under an applied magnetic field. The plane of the domain wall is perpendicular to
the z axis.
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application of an external static magnetic field. The atomic magnetic moments,
the magnetic moments of the conduction electrons, and the magnetic moments
of the nuclei can absorb energy from an oscillating field. These phenomena are
usually described in terms of classical equations of motion of the magnetization,
as the Bloch equations, the Landau-Lifshitz equations, or the Gilbert equation
[see, e.g., Morrish (1965)]. These equations of motion are discussed in Sections
7.2,7.3, and 8.4.

Among the resonances that may be observed, one includes (1) cyclotron
resonance, (2) electron paramagnetic or spin resonance (EPR or ESR), (3) ferro-
magnetic resonance (FMR) and antiferromagnetic resonance (AFMR), (4) spin
wave resonance, and (5) nuclear magnetic resonance (NMR). This last phenom-
enon will be discussed in more detail in Chapters 7 and 8; a brief introduction to
FMR will be presented in Section 8.4.

Cyclotron resonance (or Azbel’-~Kaner resonance) is observed in metals and
semiconductors, under the action of microwaves; in nonmagnetic materials it
requires the application of an external magnetic field. It results from the
interaction of the electric field of the microwaves with the charge of the electrons,
keeping them in circular orbits; therefore, it is not in fact a magnetic resonance.
The resonance condition is the same as the operating regime of the cyclotrons,
given by

w=— (5.68)

where Bis the magnetic induction and m is the effective mass of the electrons; this
frequency is twice the expression of the Larmor frequency [Eq. (2.10)].

In electron paramagnetic resonance, transitions are observed between the
energy states of the unpaired electrons in the atoms or molecules, in the presence
of an external magnetic field. For a magnetic induction ranging in tenths of tesla
(or in the range of kilogauss), the resonance frequencies are in the region of
gigahertz. A special type of EPR is observed in diamagnetic metals, due to
conduction electrons: the conduction electron spin resonance (CESR). It is
characterized by very broad lines, due to the fast relaxation rates of the
conduction electrons (see Chapter 8).

In ordered magnetic systems, the atomic spins precess in phase, under the
influence of an applied magnetic field. With the incidence of microwaves, we may
obtain, according to the case, ferromagnetic resonance (FMR), or antiferro-
magnetic resonance (AFMR) (see Section 8.4). These resonances are usually
observed in the same way as is EPR, although in the case of FMR the atomic
magnetic moments are also under the influence of the demagnetizing fields. The
resonance condition for ferromagnetic resonance where the ions feel an aniso-
tropy field B, is

w=(By+ B,) (5.69)

where + is the gyromagnetic ratio of the atomic moments and B, is the applied
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magnetic field (Section 8.4). As in other types of resonance where the magnetic
moments are electronic moments (as in EPR), for applied fields in the range of
tenths of tesla (or kilogauss), the resonance frequencies are usually in the
gigahertz range.

Finally, the spin wave resonance is a special type of FMR, which may be
observed in thin samples of magnetically ordered materials. These samples,
under a magnetic field applied along the normal to the plane of the film, present
an amplitude of precession of the atomic moments that varies along the same
normal. For some spin wave wavelengths, the turning magnetization is max-
imum, and there is resonance. The resonance condition is defined by

hw = gug(By — poM) + DK* (5.70)

where

K =nr/L (L is the smallest dimension of the sample)
n = an integer

D = the spin wave stiffness constant (see Section 3.5)
g = the g factor

M = magnetization.

The observation of the different resonances succinctly described above
presupposes the possibility of penetration of the electromagnetic waves into
the solids. In the case of metallic solids, this penetration is limited because of the
skin effect; the intensity of the electromagnetic field inside the conducting
samples falls exponentially, decreasing to 1/e of the value on the surface for a
penetration depth s, given by

s=4/2 (5.71)

where

p = the electric conductivity
w = the angular frequency of the electromagnetic wave
i+ = the magnetic permeability at the applied frequency w.

A case of large practical importance is the penetration of the fields at the
ac frequency of the electricity network (60 or 50 Hz) into electric conductors
and transformer cores. For a copper conductor, at this frequency, for example,
s is approximately 1 cm; for an iron core, s = 1 mm. The skin effect is also
relevant in the phenomenon of giant magnetoimpedance, which consists in
the large variation of impedance of a sample as a function of applied magnetic
field.

At higher frequencies, the penetration is a function of the permeability p(w).
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For a frequency around 100 MHz, the penetration depth in a metal is smaller
than 10 pym.
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EXERCISES
5.1. Anisotropy Energy. For a crystal with cubic symmetry, show that the
fourth order term af + o3 + of does not appear in the expression of the

anisotropy energy, although it satisfies the symmetry requirements.

5.2 Magnetoelastic Coupling. In a cubic crystal, the density of elastic energy
in terms of the components of the tensor e; is:

2 2 2 2 2 2
Ua = %Cll (xx + €y T €z) + %C‘M(e"y T &t &)

+ CIZ(Eyyezz + €xx€r + 6xxeyy)
and the dominant term in the anisotropy energy is
Ug = Ki(0703 + 0303 + ajaf)

The magnetoelastic coupling may be formally taken into account with the
introduction of the term

2 2 2
U, = Bi(afex + €y, + aze;;) + B2(a1a2€xy + a3€,; + Q301 €;¢)
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where B; and B, are the magnetoelastic coupling constants. Show that the
total energy is minimum when

o = —B [C%IO‘% + Chaj — €, Cpyai]
xx G, + Gy

Byayan
ny = —a—

with similar expressions for the other components of ¢;;.

5.3 Equilibrium Configuration of a Bloch Wall. Let Uyn(é,¢') and Ug(4)
be the exchange and anisotropy energies, respectively, at a point x
along a Bloch wall. ¢ = ¢(x) is the angle that the magnetization at the
point x makes with the anisotropy field (same direction of the magnetiza-
tion in the domains), and ¢’ is its first derivative in relation to x. If the
extreme values of ¢ are 0 and ¢, the total energy of the wall may be
written as

@
= A [UK + Uexch(¢a ¢,)]dx

The equilibrium condition of the wall can be obtained from the variational
principle:

6J =0

(a) Compute 6J for the case in which Uggp, = h(¢)¢”, where h(¢) is an
arbitrary function of ¢. Substitute

/ / d / /!
¢ b9/ = (¢'89)— ¢'6 ¢

and show that

. % dUx dh , " d,,

(b) Recalling that 6¢ must be zero in the extremes of the variation,
integrate the last term of the preceding expression and show that

d zdh
[ o) 6 srin =2 [ 6% g
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(¢) Substitute this result into 6J and, from the condition §J = 0, obtain a
differential equation connecting these quantities.

(d) Use ¢’ = d¢/dx as integrating factor and show that

Uk(¢) = h()¢”

Thus, the equilibrium configuration is that in which the energies of
exchange and anisotropy are equal at every point of the wall.



HYPERFINE INTERACTIONS

6.1 INTRODUCTION

The electric charges present in the nucleus interact with the electrons that
surround it; in an analogous way, the electric currents (or the magnetic
moments) associated with the electrons and the nuclei also interact. The
magnetic and electrostatic interaction between nuclei and electrons may be
written in a general way as a sum of products

H=> ()= ) (6.1)
I}

where CV(1) and C*(/) are nuclear and electronic operators corresponding to the
multipolar electric terms [of parity p = (—1)1] or magnetic terms [of parity
p = (=1)'*"], where / is an integer.

The main contributions to the interaction associated with the following
nuclear moments are: (1) electric part—nuclear electric monopole moment
(which is simply the nuclear charge) and nuclear electric quadrupole moment
and (2) magnetic part—nuclear magnetic dipole moment. In some cases the
magnetic octupole interaction can also be detected, but usually it can be
neglected.

The interaction of the electric monopole moment of the nucleus with the
electric field due to the electrons is the Coulomb interaction, and does not
concern us here.

The other interactions between nuclei and electrons are called hyperfine

159
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interactions. In magnetic materials, the main hyperfine interaction is the inter-
action of magnetic origin; the electrostatic interaction is usually smaller.
Experimentally it is observed that the hyperfine interactions are much weaker
than the exchange interactions or the interactions of the ionic moment with the
crystal field; the latter, in turn, are much weaker than the spin—orbit interactions
(Hys) (in the rare earths). That is, illustrating the case of the rare earths,

His > Hexen + Hep > Hie (6.2)

Typical values of these interaction energies for the rare earth ions are
E;s/k ~ 10* K, Eoyn/k ~ 10° K, E/k ~ 10° K, and Ey/k ~ 1074 K.

The atomic nuclei are characterized by the atomic number Z and by the mass
number A: Z is the number of protons, and A4 the number of nucleons (protons
+ neutrons) present. The angular momenta of the nucleons couple in such way
as to produce zero total angular momentum / in the cases when both Z and
(A4 — Z) are even. In every other case, I # 0, and it is either integer (a multiple of
fi) or half-integer (multiple of %/2). The nuclei having nonzero angular
momentum have an associated magnetic dipole moment given by

p=gruyl (6.3)

where g; is the nuclear g-factor and y is the nuclear magneton, given by (m, =
proton mass):

_ el pup
T 2m, 1836

iy (6.4)

where pp is the Bohr magneton. The nuclear magnetic moment is also written
u= kI, as a function of the gyromagnetic ratio ~.

Since puy < pp and the g factors (g;) of the nucleus are of the order of 1,
therefore comparable to the electronic g factors, it follows that the nuclear
magnetic moments are much smaller than the ionic moments. For this reason,
the nuclear magnetism of matter produces more subtle effects than the electronic
(or ionic) magnetism. In general, the magnetic interaction energy of the nuclei
(14 B) is much smaller than kT, for usual values of B. To find effects comparable
to those of the electronic magnetization, we need to reach temperatures three
orders of magnitude lower.

Every nucleus with I # 0 has a magnetic dipolar moment. The nuclei that
have 1 >% also possess an electric quadrupole moment Q, since their charge
distribution lacks spherical symmetry.

6.2 ELECTROSTATIC INTERACTIONS

The nuclei located in a solid interact with the electric charges of the electrons
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bound to the same atom, of electrons of neighbor atoms, and of conduction
electrons (the latter, in the case of metals and semiconductors).

The interaction energy of a distribution of charges p(r) limited in space and
submitted to a potential V' (r) is given by

W:/p(r)V(r)dv (6.5)

where the integration is made over the volume occupied by the charges.

In our case we will take V' (r) due to the electrons; p(r) in this case is the
distribution of nuclear charge, and the integral is taken over the nuclear volume.
The potential ¥ (r) may be expanded in a Taylor series around the origin:

ov| 1 oV
0) + ingx—l +§Zi:;x,~xjm—]—_ 0+

where the sums are made over the components 1,2, 3 (i.e., x, y, z). Alternative
approaches use an expansion in spherical harmonics (e.g., Abragam 1961), or in
tesseral harmonics (Arif et al. 1975).

Summing and subtracting the term

&’V
SRR vesd] 6

where ¢ is the Kronecker delta, we obtain

(6.6)

v 28 V PV
0)+ZM3_}C;} Z 622 3xx; — ”8 o, _|_...
(6.8)
thus, substituting in Eq. (6.5):
— BV a Vv 5
W= V(O)/”(r)dwza—xi]o/ p(r)dv +6 o /r p(r)dv+
1 v ,
+EZ ;a)ﬁ 8)9} 0/ p(r)(3x;x; — r6;)dv + - - (6.9)

The first term of W is the electrostatic energy of the nucleus taken as a point
charge (Coulomb term). In the second term, the integral is the electric dipolar
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term of the nucleus; this is zero, since the center of mass and the center of charge
of the nucleus coincide. This may be proved by starting from the fact that the
nuclei have well-defined parity [i.e., U(r) =+¥(—r), therefore |¥(r)]> =
|¥(—r)*]. The third term only gives a displacement in the energy; we will
come back to it shortly.

Introducing the notation V7 for the second derivative of the potential, and
using the fact that this derivative is equal to the first derivative of the electric field
components (with negative sign), we have

&’V OE,

X — = j
Vi Ox;0x; Ox; (6.10)

and we speak of a gradient of the electric field, in analogy with the gradient VA4,
where 4 is a scalar. The integral of the fourth term in Eq. (6.9) is a component of
the electric quadrupole moment tensor of the nucleus, Q;

Q= /p(r)(3xixj — r*8y)dv (6.11)

The corresponding term in the expression of the energy therefore remains:

ZZ QU (6.12)

that is, it contains the product of the electric field gradient by the electric
quadrupolar moment of the nucleus. The electric field gradient is a tensor with
components 9E;/0x;.

To obtain the expression of the electric quadrupole interaction in quantum
mechanics, we initially have to substitute the charge density p(r) by the operator

p°P(r)

Pr)y=eY 6(r—r) (6.13)
k

where the sum extends over the Z protons, of coordinates x;, at the positions ry.
The quadrupole moment tensor operator becomes

op_eZ/ 3x;x; = 1°6;)6(r — 1y )dv (6.14)
oF = ez 3xuXj — 156;) (6.15)

and the hamiltonian of the quadrupole interaction results:

:ézz VO (6.16)
! J
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This hamiltonian may be written in simple form, as a function of the operators
of the angular momentum of the nucleus, using the Wigner—Eckart theorem,
which states that the matrix elements of any vector operator in the space of
eigenstates of [ % and I, are proportional to the matrix elements of /. This gives,
for the matrix elements of the operator Q;; (Slichter 1990, Chapter 10):

(Im¢|QP|1m'¢) = C(Im|3(L1; + LL) — 6,1 | Ind) (6.17)

where C is a constant and { represents the other quantum numbers besides I and m.
The quadrupolar hamiltonian therefore remains

eQ 3 ,
mz Vi [5 (LL + LL) = 81 (6.18)

ij

HQ:

where Q is a number called the electric quadrupole moment, defined as

eQ = (II{|e > " (3xuxy — reby)|IC) (6.19)

k

Taking the axes x, y, and z coincident with the principal axes of the electric
field gradient (EFG) tensor Vj;, the components of V;; with i # j are zero, and
(6.18) becomes

e*q0

"o = 311 - 1)

(307 — 1P + (I - 1))] (6.20)

where we have used Laplace’s equation (V¥ = 0). We have introduced eg = V.,
and the asymmetry parameter of the electric field gradient n = (Vi — V) / V..
The quantity eq is measured in volts per square meter (SI). The axes are chosen in
such way that the components of the EFG tensor obey

Veel 2 [Vigl > Vil (6.21)

The quantity n varies between 0 and 1, and measures how much the EFG
tensor deviates from axial symmetry.

In solids there are contributions to the EFG from the atom where the nucleus is
located and from distant atoms (see Section 6.6); the EFG vanishes at the nuclei of
pure S states in cubic symmetry. However, even for free atoms there is a certain
amount of intermediate coupling that leads to a mixed ground state. In Gd**, the
ground state becomes a mixture of *S; /2 and 6P7 /2 (Abragam and Bleaney 1970).

ForI = % the eigenvalues of H, are given by

2 1 172
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In the case of a gradient with axial symmetry, = 0, and the hamiltonian
(6.20) takes the form

2
__€eq0 2 2
Ho = @I -T) ) [3I; - I] (6.23)
The third integral in the classical expression of W [Eq. (6.9)] involves the
laplacian of V (V*V = 5.,8°V/ dx2). From Poisson’s equation, the laplacian is
related to the charge present at the point r (the electronic charge, in this case):

Pe
€0

ViV = — (6.24)

where p, is the electronic charge density and ¢, is the vacuum permittivity
leo = 1/(poc?)]; the third integral, in the nuclear volume, is zero for the majority
of the electrons. In the case of s electrons (and p, /; electrons) that have nonzero
density in the region of the nucleus, the third term of the expansion of the energy
[Eq. (6.9)]is not zero. It becomes, using Eq. (6.24) and the fact that the integral of
#p(r) is equal to Ze(r*)

_ n_ 1o 2,2
W= 6er peZelr’y = 6e Ze"|T(0)]7(r) (6.25)

where (r?) is the nuclear mean quadratic radius, and we take into account that
the nuclear charge is Ze. We have taken the density p, equal to the electronic
density at the origin:

pe = —€lT(0)’ (6.26)

This term in the energy expansion gives rise to the isomer shift, in Mssbauer
spectroscopy. In the Mossbauer effect a gamma ray is emitted without recoil by a
nucleus in the excited state (at the source) and absorbed resonantly by another
nucleus, in the absorber. Since, in principle, the nuclear mean quadratic radii in
the ground state and in the excited state are different, and also, the values of
|¥(0)]? are in general different in the matrix of the source and in the absorber, the
change in W can be measured. The energy displacement (the isomer shift) is
proportional to the difference in mean square radius in the ground state (sub-
script 1) and excited state (subscript 2), and to the difference in electronic density,
at the nucleus, between source (subscript s) and absorber (subscript a):

1

6eg

AE = —ZA(|T(0)[2 — |[T(0)|D) (< r* >, — <7 >)) (6.27)

Instead of expressing the isomer shift in terms of the mean square radius, one
often uses the nuclear radius R, related through R? = 2 (.
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The electric field gradients that act on the nuclei in solids arise from the ionic
charges from the electrons of the parent atom and also from the conduction
electrons, in metals and semiconductors.

For a free ion of total angular momentum J, it can be shown that the
interaction between the quadrupolar electric moment of the nucleus and the
electric field gradient due to the electrons is (Bleaney 1967)

3J-D243/20- 1) —J(J + DI +1)

=58 2727 — DIQ2I - 1)

(6.28)

where

B=-&q0<r>><J|al|lJ>J2J-1) (6.29)

with eq the electric field gradient (8°V/0z%) and Q the electric quadrupole
moment of the nucleus; {J || || J} is a number tabulated for each ion [for the
rare earths, see Elliott and Stevens (1953)].

The electric quadrupole hyperfine interaction in magnetic materials is typi-
cally one order of magnitude smaller than the magnetic dipolar hyperfine
interaction.

6.3 MAGNETIC DIPOLAR INTERACTIONS

The dominant term in the expansion of magnetic interactions of electrons and
nuclei, given by the general expression (6.1), is the interaction with the nuclear
magnetic dipole moment. This term arises from the effect of the spin and orbital
magnetic moments of the electrons, acting on the dipolar magnetic moments of
the nuclei. The magnetic dipolar hyperfine interaction may be written as an
interaction of the nuclear magnetic dipolar moment with a magnetic field due to
the electrons—the hyperfine field:

Hue = —p7 - Byp (6.30)

This can be shown from the general expression of the interaction between an
electronic current density and the nuclear magnetism. We may also show the
different contributions to the hyperfine field; these contributions are due to the
orbital momentum of the electrons, the distribution of the spins of the electrons
outside the nucleus, and the spin density of the s electrons in the region of the
nucleus.

We will initially study the vector potential at r associated with an arbitrary
distribution of currents, of density J at point r’ (Fig. 6.1). The value of B at each
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Figure 6.1 The current density J(r') at the point ', in a limited space region, giving rise to a vector
potential at a point P, of coordinate r.
point of space P can be obtained from the vector potential A(r):

B(r) =V x A(r) (6.31)

where the potential A(r) at the point P, of positionr, due to a current density J at
the point r', is given by the general expression

A =1 /V |r'](_rj,|dv’ (6.32)

where  is the free space permeability. The integration is performed on a volume
contained in a region of finite radius R.

We will study the form of A(r) for an arbitrary distribution of currents. For
this purpose, we will expand the denominator of A(r) in powers of r’. This is
useful for the case of a distribution of currents of small dimensions, compared to
Ir]. The expansion gives

1 1 r-r

Bl Tl 6.33
PR R RANE (6.33)

The ith component of A(r) becomes

A(r) :ﬁq[ /V J()d + - [/ r'J,-(r')dv'+~~} (6.34)

rf?

Because J(r') is spatially limited and has zero divergence, it follows for the first
integral of this equation (Jackson 1975, Section V.6):

/ Ji(E)dd = 0 (6.35)
;
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Therefore, the term corresponding to the electric monopole in the expansion
of the electrostatic interaction (the Coulomb term) is canceled in the magnetic
case. The integral of the second term becomes

r- %/r/J,-(r')dv’ = ijﬁxj'-J,-(r')dv’ = —%ij V(xﬁ.]j — X J)d' =
j

j
_ —%Zfijkxj/(r/ x J)edt = —%{r X /(r' X J)dv’:l (6.36)
e ” v i

where ¢ is the Levi—Civita symbol, equal to zero for repeated indices, and +1
for circular permutations of {, j and k, and —1 otherwise.
Here we have used (Jackson 1975)

XiJ; 4+ xiJ)dv =0 6.37
, \Kidp T

The magnetic moment associated with a current density J(r') is defined in a
general way as

m = %[/(r’ x J('))d (6.38)

integrated over the region of space (volume) where the currents are
circumscribed.

The second term in the expansion of A(r) can then be expressed in terms of the
magnetic moment m, using Eq. (6.38):

_ pomXxr
C4r Ir)?

Ar) (6.39)

which is the expression of the vector potential at a point r, due to a magnetic
dipole at the origin.
The magnetic field B associated with the vector potential A(r) is

B(r) = Z—;# [3(r- m)r — r’m] (6.40)

which is the magnetic field of a dipole m. [Conclusion: The non-zero term in the
expansion up to first order in r’ of the field produced by an arbitrary current
density J(r') is the field B(r) due to a magnetic dipole. The magnetic field far from
an arbitrary distribution of currents is identical to the field of a dipole.]

We may compute the contributions to the hyperfine field that originate from
the magnetic dipolar moment of the electrons. The magnetic dipolar moment of
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the electron in the atom has a contribution of the spin angular momentum and
another of the orbital momentum. We will initially study the spin term.

6.3.1 Contribution of the Electronic Spin to the Magnetic
Hyperfine Field

The conduction electron states in a crystal may be described by Bloch functions:
(1) = ug(r)e™” (6.41)

where k is the wavevector and #,(r) is a function that has the periodicity of the
crystal lattice; ¥, (r) is a plane wave [exp(ik - r)] modulated by u,(r). The spinup
electronic density due to electron i at pointr is p,T (r); itis given by the probablllty
density of finding the i electron of spinup at the point r, that is, |u(r, 1)]* =
[ (r, 1), or

pr(r) = fu(r, 1)|° (6.42)

The magnetization at the point r due to the electron i is related to the difference in
electron density Ap;(r) = pg - p} and has the expression

— —gug Z slol () = pi(0)] = —gus )_sidpi(r)  (6.43)

where s; is the spin angular momentum of the electron i.

The interaction energy of the magnetization M(r) at the point r with the
magnetic dipole moment of a nucleus located at the origin, per unit volume, may,
in principle, be written in the form of an interaction with a magnetic dipole field:

kL [3(r-M)r — r’M] (6.44)

which is valid only, for r # 0, of course, and may be written

B,

ws = _IJ'I . 7 (645)

where B, is the spin magnetic dipolar field and V is the volume.
Integrating over the volume of the atom, it follows for the dipolar field B, due
to the spin momentum of the electrons, that

gusz 5;+€)e, — 8 (r7”); (6.46)
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with e, the unit vector of the direction r and

7, = / —wdu (6.47)

r

the mean cubic radius of the electrons with spin s. When the spin density has
spherical symmetry, the value of (6.46) is zero; this arises because the magnetic
dipole ficld inside a spherical shell is zero, since it involves the integral

/ (1 —3cos’f)siné df =0 (6.48)
0

where 6 is the angle between s and e, in Eq. (6.46).

For the electrons that have a nonzero density at r = 0, as the s electrons (and
the p; s, electrons in the heavy atoms), there is also another term in the hyperfine
field, the Fermi contact term, which will be derived below.

The contribution of the magnetization to the magnetic induction inside a
sphere with uniform magnetization M(0) is (Jackson 1975, Section V.10):

to 87
=—— 6.4
e () (6.49)

The magnetization due to a single s electron is

M(0) = —gugsp(0) = —gups| ¥ (0)* (6.50)

where p(0) is the electronic density at the origin.

Substituting the expression of M(0) into B [Eq. (6.49)], we obtain for the
contribution to B of the electron spin density sp(0) at the nucleus (the Fermi
contact term)

po 8m
B, =027 51
e 23 grpp(0)s (6.51)

with the corresponding interaction energy

Po 8T puy
W.="—=—gug— p(0)I- 6.52
=13 8usy PO)L-s (6.52)
Using the fact that p(0) has the dimension of r~>, we may introduce the
expression of the mean value of r— ((r;*);) for electrons that contribute to the
contact interaction (mostly s electrons), absorbing into r, the factor 87/3 and the
ratio g/2 (e.g., Bleaney 1967):

B = LLoup L s(r), (6.53)
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The resulting magnetization is proportional to the difference between the up
and down electron spin densities. The spin density due to the superposition of the
contributions of all the orbitals at r = 0 (each one of quantum number #) is

p(o)tot = Z{llpns(o’ T)lz - [\Ilns(07 l)iz} (654)

Since the s electrons have / =0 and their spatial distribution is spherically
symmetric, B, is their only contribution to the hyperfine field.

The incomplete shells (and also the conduction electrons; see Section 6.5.2)
may also give rise to another contribution to the hyperfine field, through the
modification of the radial distribution of the closed shells, thus producing a
noncompensated spin density at the origin. The expression is the same as in
Eq. (6.49), with p(0) = p(0)*" and with the sum performed on every shell, both
complete and incomplete. This leads to an s magnetization equal to M(0) at the
nucleus, and this term of the hyperfine field, called the core polarization field, acts
through the contact term and is written

8
B, = %?MQ(O) (6.55)

This term is dominant in the hyperfine field of the S-state rare-earth ions, such
as Gd*T, and in the ions of d transition metals, such as Fe. In the free Gd** ion,
the core polarization field has a value of B, = —21 T;in metallic Fe, itis —27.5 T.
In the series of tripositive rare-earth ions, the core polarization field is pro-
portional to the spin component of the total angular momentum J, given, in
tesla, approximately by (Netz 1986)

Boy=—6(g—1)J (6.56)

In the actinides the core polarization field can be much larger than in the rare-
earth elements; in the Am?>* jon (S state), for example, the core polarization field
is —220 T.

6.3.2 Orbital Contribution to the Magnetic Hyperfine Field

We will now compute the field due to the orbital motion of the electrons. Taking

this time the inverse point of view, we will obtain the vector potential at the point

r due to the nuclear magnetic dipole moment g, located at the origin (Fig. 6.2).
This vector potential is given by

Ho pp X T
Ar) = m (6.57)
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Figure 6.2 The nuclear magnetic moment p, creates a vector potential A(r) at point P, of
coordinate r, where there is an orbital current of density J(r).

The interaction energy of the nuclear vector potential A(r) with the electronic
current density J,(r) is the volume integral'

W:f/A(r)-Je(r)dU:_ﬂ (_”JM({U:_@ (rXJe(r))'P'ldv
V

arfy )y
(6.58)
where we have used the permutation of the mixed product
a-(bxc)=c-(axb)=>b-(cxa) (6.59)

We may take the nuclear moment out of the integral; using J,(r)dv = v dg,
where v is the velocity, dv is a volume element, and dg is an element of charge, it
becomes

‘LLO rxy
w=_2,,. 2 a4 6.
47-‘-”1 IrIS q ( 60)

" This expression has to be divided by 2 in the case where the vector potential A(r) includes
contributions of the current density J (not our present case).
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The orbital angular momentum of each electron is (r x m,v) = 4. Using

/ 1 dg = —e(r7”) (6.61)

where (r7°) is the average over the coordinates of the electron with orbital
momentum L, it leads to, summing over N electrons:

N
_ ko eh ~3 _ ko
=4 Ei prel; —me 2#3 E Ky )i (6.62)

substituting the Bohr magneton ug = efi/2m,.

Finally, the total hyperfine field due to the various electrons, including dipolar
spin terms, the contact term, and the orbital term, may be written using Egs.
(6.46), (6.51), and (6.62), and the approximation g = 2:

guBZ{ L [ T o L T Y (6.63)

Neglecting the differences in the effective radii that appear in the spin, contact
and orbital hyperfine fields, i.e., making the approximation

< s_3> <rc 3)1 = <rl_3>i (664)

we obtain for the expression of the total hyperfine field due to the N electrons

N
—5—7072% Z{[Si —3(s;-e,)e,] +s; — L} ), (6.65)

For an atom with several electrons and LS coupling, the more usual form of
coupling of the spin and orbital angular momenta S and L, the orbital
interaction takes the form, assuming that all the electrons in the orbit have the
same value of (r;):

We = (52) 20l 1)) = (52) 205 () - L) (6.66)

From which, if we write

Wp=—p-Bg (6.67)
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it follows

B, = 222, (r)L (6.68)
T

for the expression of the total orbital hyperfine field.

For a free atom (or molecule) with several electrons, the hyperfine field is not
given in terms of the spin and orbital momenta of the individual electrons (Eq.
6.65), but in terms of S and L, or the total angular momentum J =S + L. The
hamiltonian of the total magnetic hyperfine interaction can be written

Hps = AL-J (6.69)

where I and J are angular momentum operators of the nucleus and of the ion. In
the more general case 4 is the hyperfine tensor; when A is a number, it is called
the hyperfine interaction constant. The description of the interaction in terms of
the hyperfine field By, in fact applies when A4 has uniaxial symmetry
(A, =A> Ay, A,):

th =Al-J = — My Bhf (670)
and we may express the hyperfine field operator B,;as a function of the hyperfine
constant A4:

A
By = —( )J (6.71)
EIUN

For T > 0 K, J has to be substituted by its thermal average (J)7.

From this definition, it is clear that the hyperfine field represents an effective
field, that acting on the nuclear moment, leads to an interaction equal to the total
hyperfine interaction. If B due to the electrons varies from point to point, By is
an average value on the volume of the nucleus. For example, in the derivation of
the contact hyperfine field we have used the value of the spin density at the origin
p(0)s; in fact, the contact field is related to the average of the density in the region
occupied by the nucleus. Since nuclei of different isotopes of a given element have
different shapes and different average radii, they will in general feel different
average spin densities. Thus, the hyperfine fields (or hyperfine constants) will
also be different. This effect, called hyperfine anomaly, is represented by A,
defined quantitatively by the relation

A&

R U (6.72)

where 4, A,, g, and g, are the hyperfine constants and nuclear g factors of two
isotopes. The values of A are normally very small; an exceptionally high value of
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—0.5% was observed for the hyperfine anomaly with the isotopes 151 and 153 of
Eu in salts of Eu*" (Baker and Williams 1962).

We see from Eq. (6.69) that the hyperfine interaction couples the angular
momentum of the nucleus (I) and the total angular momentum of the atom (J).
The total angular momentum (atomic plus nuclear) is

F=1+1J (6.73)

with the corresponding quantum number F, called the Ayperfine quantum number.

There are several experimental techniques that allow the determination of By
nuclear magnetic resonance (NMR), perturbed angular correlation (PAC),
Maossbauer spectroscopy (MS), and so on. This is done experimentally from
the determination of the eigenstates of Hy;. The eigenstates are

Evi=—gunMBy, with M;=—-1,-1+1,--- +1 (6.74)

Therefore, we may determine By from the experimental measurement of the
separation between the energies of the hyperfine substates:

AE = grpy By (6.75)

The measurement of By through NMR (see Chapter 8) consists in the
determination of the frequency of the electromagnetic wave (in the radio-
frequency or microwave region) that induces transitions between the nuclear
hyperfine substates. The frequency v for which this occurs satisfies

hvy = AE (6.76)

Knowing g;, we may determine the value of the field By [from Eq. (6.75)] since
iy, the nuclear magneton, is a constant. The observed hyperfine splittings AE
are very small, in the range 1072'—1072* J (107107 V), this corresponds to
NMR frequencies in the range from a few megahertz to a few gigahertz.

6.4 CONTRIBUTIONS TO B, IN THE FREE ION

As we have seen previously, a free ion with an incomplete electronic shell
presents three contributions to the magnetic hyperfine field: an orbital term, a
dipolar term, and a term due to the polarization of the closed shells (McCausland

and Mackenzie 1980, McMorrow et al. 1989):

By =By, + Bdip + Bcp (677)

2 We have followed these references in discussions in the next sections.
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The field By, originates from the orbital angular momentum L of the incomplete
shell; it is the most important term for the non-S rare-earth ions. The dipolar
field Bg;, results from the interaction between the spin of the ion and the nuclear
magnetic moment. We have included in this term both contributions of the
electronic dipoles: the dipolar term in the strict sense, and the contact term due to
the s electrons.

The core polarization field B, arises from the deformations of the internal
closed shells due to an incomplete shell (e.g., the 4f shell). The incomplete shell
affects the radial distribution of electrons of spinup (parallel to the spin of the
unfilled shell) differently from that of spindown electrons. As a result of the
exchange interaction, electrons of the closed shells with spinup are effectively
attracted toward the unfilled shell. This leads to different densities of spinup and
spindown electrons in the volume occupied by the nucleus. The resulting
polarization, or magnetization, interacts with the nuclear magnetic moment
through the Fermi contact interaction.

In general, By, > By, and also By, > By,; if L=0, By, = 0,Bgi, =0
(by spherical symmetry), and B, is dominant. This is the case, for example,
with the hyperfine fields measured at nuclei of the ions Eu’* and Gd** (where
L=0).

6.5 HYPERFINE FIELDS IN METALS

The hyperfine interactions of a rare-earth ion located in a metallic matrix will be
modified. On one hand, the exchange interactions and the interactions with the
crystal field will modify the intraionic interactions previously described by Hy;
on the other hand, there will arise interactions with the conduction electrons, and
with the magnetic and electrostatic fields due to the neighbor atoms. The total
hamiltonian includes in this case intraionic interactions (') and extraionic
interactions (H"):

Hye = H +H' (6.78)

Normally, for ions with L # 0, H' >> H”, but for ions with L = 0 (and S # 0),
and for nonmagnetic ions (L = S = 0), we may have H ~ H".

We will study separately the intraionic interactions and the extraionic
interactions of an ion placed in a metallic medium.

6.5.1 Intraionic Interactions in the Metals

We have already seen that there is a hierarchy in the interactions of the free ion of
the rare earths:

7-{LS(I-H S) > Hel(J) > th(J’I) (679)
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with H (J) = H(exchange) + H(crystal field). Therefore, the hyperfine inter-
action H,y is a perturbation in the hamiltonian of the ion, and does not affect
much the M levels defined by the exchange interaction [i.e., by the magnetic field
acting on the ion, or molecular field (see Chapter 3)].

We may, with the purpose of discussing the mechanisms that affect the
hyperfine field at the nucleus of an atom in a metallic matrix, separate this
field into two parts: one part of the ion in the presence of other ions, and another
“extraionic” part, which includes external fields, effects of the conduction
electrons, and effects of the neighbor magnetic atoms:

B,=B +B (6.80)

The intraionic interaction in a metal is the modified dipolar magnetic
interaction (see Section 6.3.2):

H=a 1=A4T-J=—pu;-B (6.81)

In the cases where the interaction energy of the ion with the crystal field is
much weaker than the Zeeman interaction, the expectation value (J) is the same

as that obtained for the free ion, and the intraionic term is equal to the free ion
field:

B = By (6.82)

6.5.2 Extraionic Magnetic Interactions

The extraionic magnetic field B” that acts on the nucleus in a metal is equal to

B = Bex: + Bgip + B/c/e + Bgrb (683)
where

B.,;. = applied magnetic field
Bgip = dipolar field (due to the magnetic dipolar moments in the sample)
B, = field due to the conduction electrons

».» = transferred term induced by the orbital moment.

The dipolar field is given by

J

Bjj, = Z (ﬂ> [3hy) - 1)r; = 1 ()] (6.84)

5
47rrj

where the sum is made over every magnetic dipole p of the sample, excluding the
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one from the same atom in which nucleus the field is being measured (parent
atom). The dipolar field is usually divided into three terms. To compute them,
one thinks of a sphere, with radius much smaller than the dimensions of the
sample, but larger than the atomic distances: the Lorentz sphere. The first term is
due to the dipoles inside this sphere, and it is zero for cubic crystal lattices. The
second term is due to the free magnetic poles on the inside surface of the spherical
cavity; it is equal to % uoM; and is called the Lorentz field (M, is the local
magnetization in the Lorentz sphere). The last term is the demagnetizing field,
arising from the poles at the surface of the sample. This term accounts for the
contribution of the dipoles outside the Lorentz sphere.
The demagnetizing field (Section 1.2) is given by

Bd = —,LL()NdM (685)

where N, is the demagnetizing factor, which amounts to % for spherical particles
in the SI (47 /3 in the CGS system), and M is the sample magnetization. Note that
for spherical samples the Lorentz field and the demagnetizing field cancel each
other (for M; = M).

The field at the nucleus due to the conduction electrons has three contribu-
tions: one due to the polarization of the electrons by the parent atom (BZ),
another associated with the polarization due to neighbor atoms (B;), a third
term K;,B,,; that arises from the polarization induced by the external magnetic
field (the latter is responsible for the Knight shift, observed in NMR measure-
ments in nonmagnetic metals; Section 6.5.4). Therefore

B.. = B;,’ + B, + KyB.y (6.86)

B, is usually called the transferred field; sometimes under this denomination one
includes also the dipolar field inside the Lorentz sphere.

The extraionic hyperfine field due to the conduction electrons is a sum of
parent and neighbor contributions:

B’c/e = Kp<Up>T + K, o (687)

with (@,)r representing the thermal average of the parent atom spin at
temperature 7, and &= (¢')r = (¢ — 1){(J')r the projection of the average
spin of the atoms of the matrix. If the matrix is a rare-earth alloy, typical values
of the constants in this case will be: K; = 0.005, K,~5T,and K, ~ -5 T. In
RAL, intermetallic compounds the measured values are K, ~ —5.7 T and
K, = 0.8 T (McMorrow et al. 1989).

The contribution of the orbital momentum of the neighbor atoms to the

extraionic field is given by

Bgrb = Korb(2 - g)<J>T (688)
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Estimates on rare-earth alloys give K, = 4.4 T and in RAl, intermetallic
compounds K4, =~ 0.25 T.

The local extraionic field for a given configuration of neighbor atoms may be
taken as proportional to their magnetic moments, or to the projection of their
spins (). We may therefore write,

B, =D _f(r){o))r (6.:89)
J

where f (r;) is a spatial function, dependent on the crystal structure of the matrix;
the sumis made over the relevant neighbors, located at the positions r;. The fields
corresponding to each configuration can be determined with NMR spectroscopy
when their lines in the spectrum are resolved. This happens when the linewidth is
smaller, or of the order of the difference in field due to a nearest neighbor, and to
a distant neighbor of the impurity atom.

In some cases the oscillating character of f as a function of |r;| has been
demonstrated (Fig. 6.5). The contribution of the neighbor moments located atr;
may be modified (or amplified) by atoms in sites i that are common neighbors of
the probe atom and of the atom j. The moment at r; modifies the moment of the
atomr;, and this change affects the hyperfine field at the probe. The perturbation
of atom 7, and therefore, its amplifying effect, depends on the number (#;;) of
neighbors of j in a nonlinear way, following a function g(#; ;). In this case we can
speak of indirect transferred hyperfine interaction:

B, = Zf () 78(ni)) (6.90)

where the sum includes only atoms j that are neighbors of an atom i neighbor of
the probe atom. This type of transferred interaction is observed, for example, in
intermetallic compounds of rare earths and iron, in which the iron atoms act as
paths for the indirect transferred interactions.

6.5.3 Hyperfine Fields Observed Experimentally

Hyperfine fields have been measured with different experimental techniques;
each technique has a characteristic measurement time, typically in the range
107