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PREFACE

Two fascinating subjects have been put together in this book: the magnetism of 
matter and magnetic resonance phenomena. The first of these has captured the 
imagination of humankind for 3000 years; the second theme has a much shorter 
history, started half a century ago.

Both subjects have grown to become major technical forces: the world market 
for magnetic media and recording equipment reaches about $100 billion per year 
(Simonds 1995); also, the value of the magnetic materials produced today is 
larger than that of semiconductor materials, which are the basis of the present 
technological revolution. The application of magnetic resonance to medicine is 
revolutionizing diagnosis and changing the image of the human body.

The present text provides a succinct presentation of the properties of magnetic 
materials, hyperfine interactions in condensed matter, and the phenomenon of 
nuclear magnetic resonance. Nuclear magnetic resonance in magnetic materials 
is included as an application of these subjects.

This book is intended for final-year undergraduate courses, or graduate 
courses in magnetism, magnetic materials, and magnetic resonance. With the 
growth in the applications of magnetism in permanent magnets, soft magnetic 
materials, magnetic recording, and magnetic resonance imaging (MRI), the text 
will be useful to materials scientists, physicists, and other specialists.

The text was organized from lecture notes on the introductory part of the 
course “Introduction to Magnetism,” taught to graduate students at the 
Brazilian Center for Physical Research (CBPF). The exercises and solutions 
were written by Dr. Ivan S. Oliveira; I owe him also the stimulus for writing this 
book and the conversion of the original manuscript to Latex.

I have used SI units throughout; the units, symbols, and nomenclature 
recommended by the General Conference on Weights and Measures, and the 
International Organization of Standardization (ISO), are contained in a publica­
tion of the National Institute of Standards and Technology (NIST) (1995) 
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(available from www.nist.gov). At each point I have included the conversion 
factors to the centimeter-gram-second (CGS) system. Some plots of experimental 
results are in CGS units, reflecting the present state of the literature on magnetism, 
in which the two systems coexist. On the use of the magnetic induction B or 
magnetic field intensity H, see Shadowitz (1975) and Crooks (1979).

In the choice of references presented along the text, I have preferred to 
indicate review articles and textbooks, with the intention of reinforcing the 
didactic function of the book.

I have tried to keep the text short; the books of Smart (1966) and McCausland 
and Mackenzie (1980) are two very different and successful examples of short 
texts, and were used as references in some chapters.

Acknowledgements are due to Dr. R. C. O’Handley for the hospitality during 
the period 1993-94, spend at the Massachusetts Institute of Technology, where 
some parts on macroscopic magnetism were first written.

I thank especially J. S. Helman, H. Micklitz, and X. A. da Silva for reading the 
manuscript and for many suggestions. We also acknowledge the comments of 
W. Baltensperger, V. M. T. Barthem, G. J. Bowden, W. D. Brewer, M. A. Con- 
tinentino, H. Figiel, E. Gratz, D. Guenzburger, L. lannarella, Cz. Kapusta, 
M. Knobel, H. R. Rechenberg, H. Saitovitch, L. C. Sampaio, J. Terra, and 
M. Wojcik.

I am especially grateful to my students V. L. B. de Jesus, R. Sarthour, Jr., and 
C. V. B. Tribuzy for their help in the trial of the first version of the text. 
I acknowledge the work of L. Baltar, with the figures.

Finally, suggestions and comments are welcome.

A. P. Guimaraes

Centro Brasileiro de Pesquisas Fisicas
R. Xavier Sigaud 150
22290-180 Rio de Janeiro, RJ, Brazil

apguima@cat.cbpf.br
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INTRODUCTION

1.1 MAGNETISM OF MATTER

The discipline of magnetism studies the magnetic fields, the magnetic properties 
of matter, and the interactions between matter and the fields. The magnetic field 
is a fundamental concept of magnetism: it is a field of forces that describes a 
property of space in the neighborhood of either charges in motion, or of 
magnets. Its presence can be detected, for example, through the force exerted 
on a probe consisting of a wire traversed by a current.

Materials exhibit different behaviors in the presence of a magnetic field. 
The most evident differences may be observed through the changes in the 
magnetic field itself in the neighborhood of the samples under study, or 
through the forces exerted on them by a distribution of magnetic fields. The 
three traditional classes of materials, in terms of magnetic behavior, are dia­
magnets, paramagnets, and ferromagnets. Materials of the first type are repelled 
from a region of more intense field, those of the second type are attracted, and the 
last type are strongly attracted; except for the last effect, these observations 
require very sensitive instruments. Inside these three classes of materials, a 
property known as magnetic induction also behaves in a differentiated way: it is, 
respectively, reduced, increased, or greatly increased in relation to its value in 
vacuum.

Before examining the classes of magnetic materials, we will briefly survey the 
magnetic quantities. For a revision of this topic, see, for example, Grant and 
Phillips (1990). Definitions and recommendations on the use of magnetic units 
can be found in Taylor (1995) and Cohen and Giacomo (1987).

1



2 INTRODUCTION

1.2 MAGNETIC QUANTITIES AND UNITS

A magnet creates a magnetic field in the space around it; a magnetic field can also 
be created by an electric current. The physical quantity that describes the effect of 
a magnet or current in its neighborhood is the magnetic induction or magnetic 
flux density B. A measure of the magnetic induction may be given by the Lorentz 
force, the force on a charge q in motion. The Lorentz force acting on a charge 
that moves with a velocity v is given by

F = </vxB (1.1)

The unit of magnetic induction in the SI (Systeme International d’Unites) system 
of units is the tesla (T), defined as the magnetic induction that produces a force of 
1 newton on a charge of 1 coulomb, moving with a velocity of 1 ms-1 in the 
direction perpendicular to that of B. The unit of B in the CGS (centimeter­
gram-second) system is the gauss (G), which corresponds to 10 4 T.

The fundamental equations of classical electromagnetism, which involve its 
main physical quantities, are Maxwell equations, given in Table 1.1 (SI) 
(e.g., Grant and Phillips 1990).

In the equations shown in Table 1.1, H is the magnetic field intensity, D is the 
displacement vector, p is the electric charge density and j is the current density. 
In j are included the conduction currents proper and also convection currents 
(those where there is motion of matter) (Shadowitz 1975).

The effect of a magnetic field may be characterized by the magnetic induction 
(or flux density) B or the magnetic field intensity H. The tendency in recent 
decades has been to emphasize B as a more fundamental quantity (e.g., Crooks 
1979). One justification for this choice is the higher degree of generality of B; the 
curl of B is equal to /z0 times the total current density jn including convection 
currents and currents associated to the magnetization (Shadowitz 1975); is the 
vacuum magnetic permeability, a constant equal to 4tt x 10-7 Hm-1 (henries 
per meter) (SI).

As is usual in the literature, we will normally employ the word field when 
referring to the induction; the notation B should remove any ambiguity with the 
magnetic field intensity (H).

Before defining magnetization, we will define magnetic moment. Let us imagine 
an infinitesimal closed circuit of area dS through which a current I flows. The

Table 1.1 Maxwell equations

curl H = j + dlfidt
curl E = dR[dt
div D = p
div B = 0

Generalized Ampere law
Faraday law
Gauss law
(Nonexistence of magnetic monopoles) 
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magnetic dipole moment, or magnetic moment associated with this circuit is

dm = I dS (1-2)

where dS is the oriented element of area, defined by the sense of the current, and 
given by the right-hand rule. The magnetic moment is measured in joules per tesla 
JT-1; (=A m2) (in SI), and in ergs per gauss (erg/G) [also referred to as emu 
(electromagnetic unit), although strictly speaking, this is not a unit] (in CGS).

The magnetization M of a body is its total magnetic moment divided by its 
volume, a quantity that is numerically equivalent to

M = /?m (1.3)

where n is the number of magnetic moments m per unit volume. The magnetiza­
tion M is measured in amperes per meter (Am-1) or webers per square meter 
(Wb m-2) in SI units and in oersteds (Oe) in the CGS system. Table 1 .II presents 
values of the magnetization M measured for the elements iron, cobalt, and 
nickel.

The magnetic field intensity H is defined as

T>
H =---M (1.4)

Mo

and has no specific unit in the SI, being measured in amperes per meter (Am-1); 
note that it has the same dimension as M. In the CGS, it is measured in oersteds 
(Oe). The constant /z0 is the vacuum permeability [/z0 = 4tt x 10-7 Hm-1 (SI)]. 
In the CGS system, has a value of 1 gauss per oersted; therefore, the magnetic 
field intensity (in oersted) and the magnetic induction (in gauss) have the same 
numerical value.

A magnetic current that flows through a conductor produces a magnetic 
field; 1 Am-1 is the intensity of the field inside a solenoid of infinite length, 
with N turns per meter, traversed by a current of 1 /N amperes. For practical 
purposes, the magnetic fields are produced either by the action of electrical 
currents flowing through coils, or by means of permanent magnets. Table 1 .III

Table 1 .II Magnetization M and polarization J for the elements Fe, Co, and Ni at low 
temperature

Element
Ma 

(103Am-1)
J(=

(T)
T 

(K)

Fe 1766 2.219 4.2
Co 1475 1.853 4.21
Ni 528 0.663 4.21

aM values from Landolt-Bornstein, Magnetic Properties of 3d Elements, New Series III/19a, 
Springer-Verlag, Berlin, 1986, p. 37.
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Table 1 .III Typical values of the magnetic induction B in tesla, 
associated with different sources, including the surface of some 
astronomical bodies

Origin or Site B (in T)

Brain 10~12
Galactic disk IQ-10

Heart 1O“10
Earth 10“4
Sunspots 10“'
Permanent magnets IO1
Ap-type stars 1
Electromagnets 1
Superconducting coil 1-10
Nucleus of metallic Fe 30
Nucleus of metallic Ho (4.2 K) 737
White dwarf stars <104
Neutron stars 108

presents some values of magnetic induction obtained either through these means, 
or observed in Nature.

The vectors B and H obey different boundary conditions in the frontier of 
material media:

B± is continuous.
H|| is continuous.

We can read the definition of H [Eq. (1.4)] in the following way: there are two 
contributions to the magnetic induction B in a material medium; one arising 
from the magnetic field H (equal to /i0H), and another contribution proportional 
to the magnetization, equal to /z0M. The total induction in the medium becomes

B = /i0(H + M) (1-5)

Whenever we refer to material media, we will mean by H the internal magnetic 
field intensity.

In the CGS system, the fields B and H are related through

B = H + 4tfM (CGS) (1.6)

with B in gauss (G) and H in oersted (Oe); M is measured in ergs G-1 cm-3, or 
sometimes in emu cm-3.

Another form of characterizing magnetic materials is through the use of the 
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polarization J (also known as intensity of magnetization I), defined by

J = MoM (1.7)

and measured, as B, in tesla.1
The measure of the magnetic response of a medium to the action of a magnetic 

field of intensity H is given by its magnetic susceptibility %. The magnetic 
susceptibility (volume susceptibility) % is dimensionless and given by 

or in differential form, by x — dMjdH. The mass susceptibility (or specific 
susceptibility) is the total magnetic moment divided by the field H, divided by 
the mass, and is measured in cubic meters per kilogram; it is related to the volume 
susceptibility through xg — x!P, where p is the density.

The magnetic response of a medium can also be measured by its magnetic 
permeability, denoted by p. If the proportionality of M and H is observed, then

B = pH (1.9)

where p is the magnetic permeability. A more general definition of p is given by 
p = B/H. The magnetic permeability of a material is in general not a constant, 
but depends on the value of the field H.

In anisotropic media, p, and also %, depend on the direction of the applied 
field, and are second-rank tensors.

We can define the relative magnetic permeability pr of a medium, in terms of 
the vacuum magnetic permeability p$\

»r = - (1-10)
/A)

The relative magnetic permeability pr is related to the susceptibility %, and it 
follows, from Eqs. (1.8) and (1.9)

Mr=l+X (1-H)

The relative permeability in the SI is numerically equal to the CGS permeability. 
From Eq. (1.6), we obtain pr = 1 + 4tty (CGS), and therefore, the SI suscepti­
bility is a number 4tt times larger than Xcgs-

lrThis form of describing the effects of the magnetization is part of the Kennelly convention; it is 
different, but it is not incompatible with the Sommerfeld convention, which we have adopted, and 
which is the one most frequently used in physics.
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Table 1 .IV Magnetic (volume) susceptibility x and relative magnetic 
permeability pr of some elements at room temperature3

Element X X io6 Pr

Na 8.09 1.000008
K 5.76 1.000006
Al 20 1.000020
Ti 182 1.000182
Cr 286 1.000286
Mn 830 1.000830
Cu -9.7 0.999990
Zn -12 0.999988
Ge -7.14 0.999993
Pd 789 1.000789
Ag -25.2 0.999975
Sb -68 0.999932
La 56 1.000056
Pt 261 1.000261
Au -34.6 0.999965
Tl -36.4 0.999964

a Derived from values of mass susceptibility xg (Landolt-Bornstein, Magnetic Proper­
ties of 3d Elements, Springer-Verlag, Berlin, 1962, p. 1-5); pr was computed from x 
using Eq. (1.11).

Figure 1.1 (a) Lines of magnetic field intensity H in the neighborhood of a sphere of material with 
relative permeability pr > 1 (or, equivalently, x > 0) introduced into an originally uniform field. Note 
the smaller density of lines inside the sphere, representing a reduction in the modulus of H; (b) the 
internal field Hint and the magnetization M induced in the sphere.
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Table 1 .IV shows room-temperature values of the susceptibility % and relative 
permeability for some elements.

The directions and intensities of the field H and of the magnetic induction B 
may be represented by lines of force; these are lines that have at every point of 
space the same direction as H or B, with density per unit area proportional to the 
intensity of the corresponding field. The lines of H and B reflect the different 
properties of these fields; the lines of force of H start from the north (N) pole of 
each magnetic dipole and end at the south (S) pole; the lines of B are closed. The 
lines of H are analogous to the lines of force of the electric field E, with the 
charges substituted by (fictitious) magnetic poles (Fig. 1.1).

In Fig. 1.1 one can see the lines of force of the field H in an (initially uniform) 
field where a sphere of paramagnetic material (therefore a material with relative 
permeability /ir > 1) was introduced; Fig. 1.2 shows the lines of B in this case.

The lines of H inside a magnet and in the adjacent space initiate on the N pole 
and end on the S pole; this can be seen in Fig. 1.3, which shows a magnet in the 
absence of external applied fields.

The lines of induction B inside a magnetized medium point in the opposite 
sense, specifically, from S to N (Fig. 1.4). In empty space, the lines of H and B 
coincide, since B = /z0H.

A magnetized body has at its surface “free poles” that arise where the normal 
component of the magnetization M goes through a discontinuity (Fig. 1.5). In

Figure 1.2 (a) Lines of magnetic induction B around a sphere of relative permeability /zr > 1 (or, 
equivalently, x > 0) introduced into an originally uniform field; (b) directions of B, and 
magnetization M inside the sphere.
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Figure 1.3 (a) Lines of magnetic field intensity H inside and outside a magnet; (b) the internal field 
Hint (equal to the demagnetizing field Hd in the absence of external field) and magnetization M 
inside a magnet.

the interior of the body, the opposite poles of the individual magnetic moments 
compensate each other. The density of free poles is given by

ps = M • n (1.12)

where n is the unit vector normal to the surface. The free poles produce an 
additional field H^, opposed to M. If the magnetization originates from the 
action of an external magnetic field Ho, the field intensity H inside the body 
therefore differs from Ho: H = Ho - H^. The field is called the demagnetizing 
field, its intensity is proportional to the value of the magnetization M, and its 
direction is opposite to M. The intensity of the internal magnetic field in the 
material, under an applied field Ho, is therefore:

H = Ho - NdM (M3)

where Nd is the demagnetizing factor.
The demagnetizing factor Nd depends on the shape of the body and the angle 

between its axes of symmetry and the field H; it varies between 0 and 1 (or
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Figure 1.4 (a) Lines of the magnetic induction B inside and outside a magnet; (b) directions of B, 
and magnetization M inside a magnet.

between 0 and 4tt in the CGS system). For example, it is zero for an infinite 
cylinder under the action of a field H parallel to its axis, and is equal to | for a 
sphere (4tt/3 in CGS). To obtain the value of the demagnetizing factor in the SI, 
the value in CGS has to be divided by 4tt (see Table l.V).

As an illustration, we can obtain the value of Nd for a flat plate, under a field 
Ho applied perpendicular to its surface, noting simply that due to the continuity 
of B±, we have Bo = B. Therefore

B = /i0(H + M) = /io(Ho - NdM + M) = /ioHo (1.14)

and it follows that Nd = 1 for a plane plate, with a perpendicular field.
In samples of arbitrary shape, the demagnetizing field varies from point to 

point; the field is homogeneous only inside ellipsoidal samples. This includes 
limiting case ellipsoids, with a = b = c (sphere), a = 0 (plane), or b — c = 0 
(wire). The demagnetizing factors along the three axes of an ellipsoid are related: 
<+^+^ = 1.

In the most general case the demagnetizing field does not point along the same 
axis as M, and the demagnetizing factor is a tensor N^.

The conversion factors between the SI and CGS systems for the units of the
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[KT^l 
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Figure 1.5 (a) Elementary magnetic dipoles in a magnetized sphere; (b) “free poles” at the 
surface of the sphere, arising from the uncompensated poles of these dipoles.

most important magnetic quantities are given in Table l.VI. For a discussion of 
the units and quantities of magnetism, see Grandjean and Long (1990) and 
Evetts (1992, p. 253).

One can analyze the behavior of the magnetic flux inside samples of magnetic 
material using the properties of the fields B and H. Material media may be used 
to form magnetic circuits, where the lines of force may be studied. In the case of a 
closed magnetic circuit formed of a toroidal piece of magnetic material, there are 
no free poles, and consequently no demagnetizing field (Nd — 0). To be of any 
use, however, a magnet normally has to have a gap, and the presence of a gap 
opens the magnetic circuit.

As an example of a magnetic circuit, we may examine the case of a toroidal 
magnetized sample, of cross section A, with a gap of length Zg (Fig. 1.6). From 
Ampere’s law, the line integral of H around the magnetic circuit is zero, because 
there is no current. Calling Hm the intensity of the magnetic field inside the 
magnetic material, and Hg the field in the gap, one has

Hglg-Hmlm = Q (1.15)

where lm is the length of the magnet. The magnetic flux across an area A of unit

Table 1.V Demagnetizing factors Nd (Sl)a

Shape Direction

Plane ± 1
Plane II 0
Cylinder (l/d = 1) || 0.27
Cylinder (//d = 5) II 0.04
Long cylinder || 0
Sphere — i

3

a To obtain the values in the CGS system, divide by 4?r.



Table 1 .VI Magnetic quantities and units*

Quantity Symbol CGS SI
Conversion 

Factor

Magnetic induction B G T ICT4

Magnetic field intensity H Oe Am-1 103/4tt

Magnetization M erg G1 cm-3 
or emu cm”3

Am’1 103

Magnetic polarization J — T —
Magnetic moment m ergG-1 (= emu) JT“’ (= Am2) 10“3

Specific magnetization (j emug’1 Am2kg"1(= JT1 kg"1) 1
Magnetic flux Mx (maxwell) Wb (weber) IO-8

Magnetic energy density E erg cm’3 Jm’3 10"'

Demagnetizing factor Nd — — 1 /47T
Susceptibility (volume) X — — 4tt
Mass susceptibility Xg erg G1 g”1 Oe-1 

or emu g-1 Oe-1
m3 kg"1 4tt x 10"3

Molar susceptibility Xmol emu mol-1 Oc1 m’mor1 4?r x 10 "6 m3 mol-1

Magnetic permeability P GOe1 Hm"1 4?r x 10“7

Relative permeability Pr — — 1
Vacuum permeability Po GOe"' Hm’1 4?r x IO-7

Anisotropy constant K erg cm" ’ J m“3 10“'

Gyromagnetic ratio 7 s"' Oe“' m AJ s’1 4rr x 10"3

"To obtain the values of the quantities in the SI, the corresponding CGS values should be multiplied by the conversion factors.
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Figure 1.6 Lines of magnetic field intensity H and B inside a sample of toroidal shape, with a gap.

normal n is (j) = B • nA. The continuity of </> along the circuit gives

0 = BgA — n^HgA — BmA (1-16)

where Bm is the field B inside the magnet. Combining these two equations, it 
follows 

(1-17)
Mo v g

where Vm and Vg are the volumes of the magnet and gap, respectively. This 
shows that the intensity of the magnetic field in the gap (Hg) increases with the 
product BmHm (or BH). called the energy product', the square of Hg is directly 
proportional to (BH).

Magnetic circuits are analogous in many respects to electrical circuits; one 
important difference arises from the fact that the ratio of permeabilities in the 
magnetic material and in vacuum is much smaller than the corresponding ratio 
of conductivities between an electric conductor and the vacuum. This implies 
that the flux density across an open magnetic circuit is significant, whereas the 
charge flow in an open electrical circuit can be neglected.

1.3 TYPES OF MAGNETISM

The magnetic properties of matter originate essentially from the magnetic 
moments of electrons in incomplete shells in the atoms (see Chapter 2), and 
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from unpaired electrons in the conduction band (in the case of metals, see 
Chapter 4). The incomplete shell may be, for example, the 3d shell—in the case of 
the elements of the iron group, or the 4/shell—in the rare earths.

Magnetic materials are those that present permanent magnetic moments, with 
spontaneous long range order; this order is due to an interaction of electrostatic 
origin and quantum nature, called exchange interaction (see Chapter 3). The 
interaction responsible for the magnetic order may be of short range—direct 
exchange interaction—of long range, or indirect interaction.

A sample of magnetic material is generally formed of ordered regions, called 
domains, inside which the magnetization points along the same direction, which 
varies from one such region to the other (see Section 5.3). An external magnetic 
field alters the structure of domains, but leaves practically unaltered the 
magnetization inside each domain, that remains equal to the saturation magne­
tization.

The degree of structural order is important for the magnetism of matter; the 
materials can be (1) crystalline, in which the atomic sites have translation 
symmetry; (2) disordered, with atoms occupying randomly the sites of a crystal­
line lattice; and (3) amorphous, where there are no equivalent atomic sites.

In sequence, we will enumerate very briefly the main classes of magnetic 
materials (Hurd 1982); although some concepts used in this classification are 
defined in more detail in later chapters, the reader may benefit from this survey 
by exposure to the wealth of magnetic properties of the substances.

1. Diamagnetism. Type of magnetism characterized by a small and negative 
susceptibility, independent of temperature (Fig. 1.7). The susceptibility of every 
substance presents a diamagnetic component; its origin lies in the shielding effect 
due to the motion of atomic electrons. In diamagnetic materials this component 
is dominant. Conduction electron currents in metals are responsible for Landau 
diamagnetism, an effect of larger magnitude. Examples of diamagnetic 
substances are the compound NaCl (sodium chloride) and copper oxide (CuO).

2. Paramagnetism. Magnetism characterized by a positive susceptibility 
whose inverse varies linearly with temperature (Fig. 1.8). This type of tempera­
ture dependence (called the Curie law) is found at any temperature in the 
paramagnetic materials, or above a certain temperature of magnetic order, 
in ferromagnetic and antiferromagnetic materials (called in these cases the 
Curie-Weiss law). The fall in the susceptibility with temperature originates in 
the increase in the ratio of thermal energy to the energy of the atomic magnetic 
moments in the presence of the external magnetic field. One type of para­
magnetism—Pauli paramagnetism—is due to the magnetic moments of the 
conduction electrons and in this case the susceptibility is practically constant 
with temperature.

3. Ferromagnetism. Type of magnetism characterized by an spontaneous 
parallel alignment of atomic magnetic moments, with long range order (Fig. 1.9). 
Examples of ferromagnets are the elements iron, nickel, and gadolinium. This 
order disappears above a certain temperature, called the Curie temperature (Tc).
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Figure 1.7 Temperature dependence of the inverse of the susceptibility (1/x) of a diamagnetic 
material. [Adapted from C. M. Hurd, Contemp. Phys., 23,479 (1982), with permission from Taylor & 
Francis, Bristol, PA.]

4. Antiferromagnetism. Magnetism in which the atomic moments align 
antiparallel, with zero resulting magnetization (Fig. 1.10). Above the ordering 
temperature—the Neel temperature (T^)—the inverse of the susceptibility 
follows a linear dependence. Examples are FeO and Fe3Mn; o-Mn is an itinerant 
antiferromagnet, and does not obey the Curie-Weiss law.

Figure 1.8 Temperature dependence of the inverse of the susceptibility (1/x) of a paramagnetic 
material (Curie law) and of a ferromagnetic material above the ordering temperature (Curie-Weiss 
law). [Adapted from C. M. Hurd, Contemp. Phys., 23, 479 (1982), with permission from Taylor & 
Francis, Bristol, PA.]
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Figure 1.9 Temperature dependence of the magnetization M of a ferromagnetic material, 
dependence of the inverse susceptibility (1/x), and dependence of the magnetization on applied 
magnetic field; also, schematic representation of ferromagnetism, with examples of ferromagnetic 
materials. [Adapted from C. M. Hurd, Contemp. Phys., 23,480 (1982), with permission from Taylor 
& Francis, Bristol, PA.]

5. Ferrimagnetism. Magnetic order in which two or more different magnetic 
species exist (atoms or ions) with collinear magnetic moments. In general, some 
moments couple in an antiparallel fashion. The resulting magnetization is 
nonzero (Fig. 1.11). Examples are magnetite, FeO(Fe2O3) and GdFe2.

6. Metamagnetism. This is a property of some substances in which the 
antiferromagnetic order is altered by the application of an external magnetic 
field, by virtue of its small anisotropy (Fig. 1.12); there is a type of itinerant 
metamagnetism in which the magnetic field that produces this alteration is the 
field around a magnetic impurity;.

7. Enhanced Pauli Paramagnetism. Also known as incipient ferromagnetism

Figure 1.10 Schematic representation of the temperature dependence of the magnetization of 
the opposing sublattices in an antiferromagnetic material, with variation of the inverse susceptibility 
(1/x); schematic representation of antiferromagnetism, with examples of antiferromagnetic 
materials. [Adapted from C. M. Hurd, Contemp. Phys., 23, 482 (1982), with permission from 
Taylor & Francis, Bristol, PA.]
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Figure 1.11 Temperature dependence of the magnetization Mof a ferrimagnetic material, and of 
the inverse susceptibility (1/x); also, schematic representation offerrimagnetism, with examples of 
ferrimagnetic materials. [Adapted from C. M. Hurd, Contemp. Phys., 23, 483 (1982), with 
permission from Taylor & Francis, Bristol, PA.]

this type of itinerant paramagnetism is characterized by strong interactions 
between the electrons, but not sufficiently strong to produce spontaneous 
magnetic order—aligned moments may arise in limited regions, and are called 
localized spin fluctuations, or paramagnons.

8. Superparamagnetism. This is observed in small single-domain particles. 
In this type of magnetism the magnetic moments of the particles behave in a way 
analogous to a paramagnetic system, with total moment several orders of

Figure 1.12 Schematic description of metamagnetism. The magnetic moments change from 
configurations a to b and finally c, aligning in parallel, as the external field is increased.
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Figure 1.13 Curve of magnetization versus magnetic field of a superparamagnet, showing the 
absence of hysteresis; the probability of turning the magnetic moment is C x exp(-AE/kT), 
where AE is an activation energy. [Adapted from C. M. Hurd, Contemp. Phys., 23,486 (1982), with 
permission from Taylor & Francis, Bristol, PA.]

magnitude larger than those of the individual atoms (therefore its name). The 
magnetic behavior is well described by the classical expression of Langevin (see 
Chapter 2); the curves of magnetization versus B/T are independent of tem­
perature. The moments of each of these particles may point along different 
directions, defined by the crystal field (Fig. 1.13). Below a given temperature 
(called the blocking temperature), the changes in direction, which are due to 
thermal activation, occur in timescales longer than the observation time, causing 
the moments to appear frozen.

9. Superferromagnetism. A system of small particles that orders mag­
netically exhibits this type of magnetism (Morup 1983).

10. Canted Magnetism. A type of magnetic order containing different and 
noncollinear magnetic moments

11. Speromagnetism. The ordered magnetic materials can also be spero- 
magnets, in which the magnetic moments point along random directions 
(Fig. 1.14).

12. Asperomagnetism. In this type of magnetism the magnetic moments are 
distributed around a preferred direction.

13. Sperimagnetism. Magnetism in which there is more than one magnetic 
species, with the moments of at least one of the species pointing along a defined 
direction.

14. Spin Glasses and Mictomagnetism. Types of magnetism in which the 
magnetic moments “freeze” below a certain temperature Tf, pointing in random 
directions (as in a speromagnet). In spin glasses there is no correlation between 
neighbor moments. In mictomagnetic (micto = mixed) substances (or cluster 
glasses), there is short range correlation among the moments, with regions of 
resulting nonzero magnetization. One example of spin glass is given by a 
dilute solution of Mn in a Cu matrix, and the magnetic behavior is schematized



18 INTRODUCTION

O O O O

4 O O

o o o o

O 0 O O

0 0^0

CuMn

Figure 1.14 Dependence of the susceptibility x on the temperature of a speromagnet, exhibiting 
a characteristic cusp, and the dependence of the reduced magnetization on magnetic field H; 
schematic representation and examples of a material that presents speromagnetism—many spin 
glasses order in this way at low temperature. [Adapted from C. M. Hurd, Contemp. Phys., 23, 487 
(1982), with permission from Taylor & Francis, Bristol, PA.]

in Fig. 1.14. Spin glasses are formed when there is either spatial randomness, or 
randomness in the interaction between neighbors, combined with “frustration”, 
which means the impossibility of satisfying the type of coupling “demanded” by 
each neighbor (e.g., parallel, or antiparallel) (e.g., Mydosh 1996).

There are several ways of dividing materials into classes, according to 
their magnetic properties: (1) in relation to the magnitude and orientation of 
the permanent magnetic moments—ferromagnets, ferrimagnets, and heli­
magnets (those in which the tip of the magnetization vector follows a helix); 
(2) according to the degree of mobility of the electrons responsible for 
the magnetism—localized and itinerant; and (3) according to the value of 
the coercive field (reversed magnetic field required to cancel the 
magnetization in the M-H curve)—magnetically soft and hard (Fig. 1.15) 
(see Chapter 5).

This latter form of classification (3) is the most important in terms of the 
practical applications of magnetic materials. The hard magnetic materials (as 
NdFeB, e.g.) are employed in the fabrication of permanent magnets. The 
magnetically soft materials, like Permalloy, are used as magnetic shields, 
inductors, and transformer cores. The coercive field varies from about 
1 Am-1 in Permalloy, to 106 Am-1 in NdFeB (see Tables 5.V and 5.VII). 
Materials used as magnetic recording media (e.g., Cr2O3 and Fe2O3) present 
intermediate values of magnetic hardness (see Table 5.VI).

The materials that present itinerant magnetism can still be subdivided 
according to the degree of filling of the conduction band, into strong 
itinerant magnets (only one magnetic subband partially filled, e.g., Ni) or 
weak (both sub-bands partially filled, e.g., Fe) (see Section 4.3 and Fig. 4.9).
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Figure 1.15 Types of magnetic materials with technological applications and some examples, 
with range of coercivities. The examples of intermediate magnetic materials are taken from 
materials used in magnetic recording (see Chapter 5).

Other systems present diamagnetic behavior at low temperature and behave 
as paramagnets at high temperature; they are said to present the induced 
paramagnetism of Van Vleck.

In order to classify a sample into one of these categories, the first properties 
usually studied are the shape of the magnetization curve, the dependence of the 
magnetization on an external applied magnetic field, the variation of the specific 
heat with temperature, and so on. In the last decades these studies have been 
supplemented with analysis employing local techniques, specifically, techniques 
using as probes atomic nuclei, muons and positrons. These experimental 
techniques include Mdssbauer spectroscopy, nuclear magnetic resonance 
(NMR), angular correlations, muon spin rotation, and positron annihilation. 
The probes measure the magnetic and electrostatic interactions with the nuclei 
and with the electrons.

The technique of neutron diffraction allows the study of the spatial distribu­
tion, direction, and magnitude of the magnetic moments in condensed matter. In 
the inelastic scattering of neutrons, magnetic excitations (magnons) are created 
and annihilated, and using this technique, the spectrum of these excitations may 
be obtained.

The presence of magnetic order affects several properties of the materials; 
including electrical transport properties, elastic properties, and optical 
properties, among others.
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Figure 1.16 Temperature dependence of the spontaneous magnetization of metallic nickel 
(circles). The continuous curve is a Brillouin function for J = 1 (see Sections 2.3 and 2.6) [Weiss 
and Forrer (1926)].

1.4 MAGNETIC PROPERTIES OF SOME MAGNETIC MATERIALS

The magnetic properties of matter are affected by variables that can be 
controlled experimentally, such as the temperature, pressure, and concentration 
of the different phases; the presence of defects; the intensity of applied magnetic 
fields; the degree of crystallinity; and the dimensionality. As an example of the 
temperature dependence of a magnetic property, we may show the variation of 
the magnetization of Ni with temperature (Fig. 1.16).

Pressure affects the temperature of magnetic order of magnetic materials, as can 
be seen, for example, in iron (Fig. 1.17). The variation of the magnetic moment per 
atom in alloys formed with the 3d transition elements exemplifies the importance of 
the concentration of components for the magnetic properties; the curve of magnetic 
moment versus number of conduction electrons per atom (a quantity related to the 
concentration) is known as the Slater-Pauling curve (Fig. 1.18).

The dimensionality of a sample, namely, its shape either as a solid body, a thin 
film, or a linear chain of atoms, affects its magnetic properties. This can be seen
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Figure 1.17 Variation of the magnetic ordering temperature [Curie temperature (Tc)] of iron, as a 
function of pressure. [Reprinted from Landolt-Bornstein, Magnetic Properties of 3d Elements, New 
Series lll/19a, Springer-Verlag, New York, 1986, p. 39, with permission.]

from the variation of magnetic ordering temperature versus thickness in ultra­
thin metallic films (Fig. 1.19).

1.5 PERMANENT MAGNETS

One very important class of magnetic materials is formed of the materials 
employed in the fabrication of permanent magnets. In antiquity, the only 
known permanent magnets were naturally occurring fragments of magnetite 
(Fe3O4), but nowadays there exists a wide variety of permanent magnet materials. 
The first artificial magnets were made of iron alloys, such as iron carbon.
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Figure 1.18 Dependence of the spontaneous magnetic moment of binary alloys of elements of 
the 3d series, as a function of electronic concentration, specifically of the number of 3d plus 4s 
electrons of the respective free atoms; this is known as the Slater-Pauling curve.

The utility of magnets derives from the possibility of maintaining a magnetic 
field in their vicinity, stable with time, and with no expense of energy. For 
economical and practical reasons, it is desirable to have magnets with the 
smallest possible dimensions that generate a given induction B. For a given

Figure 1.19 Ratios of magnetic ordering temperature (Curie temperature) of ultrathin metallic films 
to Tc of the corresponding bulk metals, as a function of the thickness, measured in numbers of atomic 
monolayers. [Reprinted from U. Gradman, in Handbook of Magnetic Materials, K. H. J. Buschow, Ed., 
North-Holland, Amsterdam, 1993, p. 36, with permission from Elsevier North-Holland.]
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Year

Figure 1.20 Evolution of the materials employed in the construction of permanent magnets; 
variation of the value of the energy product (BH) with time (see Chapter 5). [Reprinted from 
J. Evetts, Ed., Concise Encyclopedia of Magnetic and Superconducting Materials, Pergamon, 
London, 1992, p. xx, with permission from Elsevier Science.]

magnet size, the quantity that must be maximized is the energy product
the maximum product of the magnetic induction by the field H in the second 
quadrant of the B-H curve (this will be discussed in more detail in Chapter 5) 
[see Eq. (1.17)]. Generally, the larger the energy product, the more appropriate is 
the material for use in permanent magnets.

Materials used in permanent magnets must in general possess: (1) high 
value of the magnetization M, (2) high uniaxial anisotropy, (3) high magnetic 
ordering temperature; these are usually intrinsic properties. Other necessary 
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characteristics are a large value of the coercive force or of the coercivity, and a 
magnetization that is not affected by external magnetic fields. These properties 
depend on the microstructure, specifically, on the grain size, the presence of 
impurities, and other factors. Some of the most promising alloys for the use as 
permanent magnets (Fig. 1.20) are those associating rare earths—responsible for 
high anisotropy energies, to d transition metals—that give rise to elevated 
magnetic ordering temperatures.
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EXERCISES

1.1 Coercive Force of a Particle. Consider a particle of a uniaxial ferro­
magnetic single domain. Let H be an applied field and UK — K sin2(0) is the 
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anisotropy energy, with 0 the angle between the direction of the applied 
field and the magnetization M. Write the total energy of the particle and 
show that the reverse field along the magnetization axis required to invert 
M is given by H — 2K/MS.

1.2 Magnetic Moment of a Sample. The magnetic moment of a sample with 
magnetization M may be written as

= y* M(r)d?j

We may define two quantities related to M, the magnetic pole density, 
Pm — -V • M(r) and the superficial density of magnetic poles, am = 
M(r) • n, where n is the unit vector normal to the surface of the sample. 
From the vector expression

V • (/A) = (V/) • A+/V • A

where f is a scalar function and A a vector function, show that

p — y rpm dv + y* ram da

where S is the limiting surface of the sample of volume V.
1.3 Energy of a Magnetized Sphere. Compute the magnetic self-energy of a 

sphere with saturation magnetization Ms and radius R. Use D = | for the 
demagnetizing factor of the sphere (SI).

1.4 Magnetic Field inside a Sphere. Compute the values of H and B inside a 
homogeneous sphere of permeability p > 0 placed in a uniform magnetic 
field of intensity H = Hi (Figs 1.1 and 1.2). Do H and B inside the sphere 
change in the same way, relative to their values in vacuum?





2
ATOMIC MAGNETIC 

MOMENTS

The magnetic moments carried by the atoms are related to the angular momenta 
of their unpaired electrons. There are two contributions to the electronic angular 
momenta: an orbital contribution and a spin contribution.

The orbital term of the atomic magnetic moment can be derived by making an 
analogy of the electronic orbit with an electrical circuit. An electric current I 
flowing through a circular coil of area A has an associated magnetic dipole 
moment /i = /A [from Eq. (1.2)], where A= An and h is the unit normal to the 
plane of the orbit. We may thus obtain the magnitude // of the magnetic moment 
associated with the motion of one electron of charge —e, moving in a circular 
orbit with angular frequency tu:

2
/LI = iTVr

2 2—ecuTvr —ewr
2tt 2 (2-1)

where r is the radius of the orbit.
The magnitude of the orbital angular momentum J = r x mey of this electron 

is
2

J — mewr (2-2)

where me is the electron mass, and therefore the magnetic orbital moment of the 
electron is

~e TM = —J
2mp (2-3)

27
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Since the component of the orbital angular momentum of the electron in a 
given direction (let us choose the z direction) is quantized, taking values 7z, 27z, 37z, 
and so on, the smallest value of Jz is Jz — h (ft is very small, equal to 
1.0546 x 10~34 J s). The corresponding magnetic moment is /xz = —eh/2me.

The quantity eh/2me is called the Bohr magneton (jib), and its value, in SI 
units, is 9.27 x 10~24 J T1 (or 9.27 x 10“21 erg G1 in the CGS system):

eh
= ~— 2mp

(2.4)

We will, from now on, express J in units of h; Eq. (2.3) is then written 
/i = (-e/2me)hJ.

Besides this orbital momentum, the electron has also an intrinsic angular 
momentum, or spin. The spin has an associated magnetic moment, in the same 
way as the orbital momentum, but with a proportionality constant twice as large. 
We may write

/i = 7# J <
for pure orbital angular momentum

for pure spin angular momentum
(2-5)

where 7 is the gyromagnetic ratio (or magnetogyric ratio), measured in s1 T-1; 
for electron orbital motion, 7 = —8.7941 x IO10 s-1 T1.

This can also be written

t f g = 1 pure orbital momentum 
I g — 2 pure spin momentum (2-6)

in terms of g, the electron g-factor (a more accurate value of g for spin angular 
momentum is g = 2.0023, but it is normally taken as equal to 2).

2.1 DIAMAGNETISM

The application of an external magnetic field to an electrical circuit induces in it a 
current that is opposed to the original current, an effect equivalent to Lenz’s law; 
this is also observed for an electron that moves in an atomic orbit. The induced 
current decreases the orbital magnetic moment; since this moment decreases 
with increasing field, the differential susceptibility, or magnetic response 
(dM/dH\ is negative. This phenomenon is called diamagnetism.

We can derive an approximate expression for the diamagnetic volume suscepti­
bility by writing the induced magnetic moment of one electron (from Eq. (2.1)):

. —cAup2
= (2.7)
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where Acj is the angular frequency of precession induced by the external field, 
and p is the mean square radius of the projection of the electron orbit onto the 
plane perpendicular to the field Bk\

p2=x2+y2 (2.8)

Assuming that with the applied field the radius of the electron orbit remains the 
same, the variation in the force acting on the electron is the Lorentz force -eujpB'.

^(meuj2p) = meA(w2)p — —eucp (2.9)

Assuming that the fractional change in frequency is small, the decrease in 
frequency is given by

eB^ = uL=- (2.10)

This frequency is the Larmor frequency; substituting into the expression of 
/x, we can obtain the volume diamagnetic susceptibility:

dM dM d(nAp)
(2'">

where /i0 is the vacuum magnetic pejrneability and n is the number of atoms per 
unit volume^Since_r2 =_x2 +y2 + z2, and for a spherically symmetric charge 
distribution x2 = y2 — z2, it results that p2 = j r2.

Therefore, the atomic diamagnetic susceptibility is obtained summing over Z 
electrons, where Z is the atomic number:

2 z _
<2J2>

Using average values of r2 « IO-20 m2, n « 5 x 1028 m-3, and taking an 
atomic number Z = 10, we obtain for the diamagnetic volume susceptibility 
X ~ — 10"5. Expression (2.12) is sometimes referred to as the Larmor diamagnetic 
susceptibility.

There is another contribution to diamagnetism, observed in the metals, that is 
associated with the orbit of the conduction electrons under the action of external 
magnetic fields - it is the Landau diamagnetic susceptibility, and its magnitude is 
one-third that of the Pauli susceptibility (defined in Chapter 4).

2.2 ELECTRONS IN ATOMS

The energy levels En of an atom are obtained from the Schrodinger equation:

= (2.13)
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where 7Y is the hamiltonian of the one particle system, built from the classical 
expression

2
H = ~—+ V 2mp (2-14)

substituting the components of the momentum p by — ihd/dxi to obtain the 
corresponding operators; V is the potential in which the electron moves. The 
Schrodinger equation takes the form

'^2 /a2 92
2me dy1 3z2y ”*~ -P = (2-15)

The potential energy of an electron near a nucleus of charge e (case of the 
hydrogen atom) is given by

(x2 +y2 + z2)1/2
(2-16)

If me is the electron mass and mp the proton mass, the Schrodinger equation is 
written, in terms of the reduced mass mr = memp/(me + mp), as follows:

h2 .
— V2^ + (E- K)^ = 0 
2mr (2-17)

Changing to spherical coordinates, adequate to the symmetry of the problem, 
and assuming that the wavefunction is the product of a radial function and two 
angular functions

= 7?(r)e(0)$(^) (2.18)

we obtain three independent differential equations, with solutions of the angular 
parts that are the Legendre polynomials P™(cosO) and $ = Cexp(zm^), with I 
and m integers.

The solution of the radial part gives an exponential decay exp(-zr/tz) 
modulated by a function that has zeros (for I 0). From this it also results the 
expression for the energy

F —
—e2m[r 1

2/r n1 (2.19)

with n an integer. A set of electrons having the same n constitute a shell. 
In conclusion, the solution involves the following numbers:
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1. Principal Quantum Number n. This number essentially determines the 
energy of the shell. The shells are traditionally denoted K, L, M, N, and so 
on for n = 1,2, 3,4....

2. Orbital Quantum Number I. Determines the orbital angular momentum of 
the electron, whose magnitude is given by

(2.20)

The number I is an integer and may have values 0,1,2,..., n - 1; the electrons 
are then called s,p, d,f, and so on. In the relativistic description of the atom, 
the energy of the electrons is also dependent on I.

3. Magnetic Quantum Number mh This gives the component of the orbital 
momentum along a specific direction. The number may be equal to 
/, I — 1, / — 2,..., 0,..., —(/ - 1), —that is, it takes 2/ + 1 values. In the 
spatial representation of the atomic quantities, known as the vector model, the 
orbital momentum can point only along certain directions (Fig. 2.1) and its 
projections are given by this is called space quantization.

4. Spin Quantum Number ms. Dirac’s theory introduces another number: the 
spin quantum number, which may take values | and — Therefore, the state 
of the electron is characterized by four quantum numbers: n, /, mh and ms.

Figure 2.1 Orbital angular momentum of a 3d electron (/ = 2), and the value of its projections 
along a direction z, showing space quantization.
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The electrons have magnetic moments associated with their components of 
angular momentum. Thus, corresponding to their orbital momentum, there is a 
magnetic moment [from Eqs. (2.5) and (2.20)] of magnitude:

= (2.21)Zme

and the component of the magnetic orbital moment pt in a direction defined by 
an applied magnetic field (assumed to be parallel to the z axis) is

(2-22)

The magnetic moment corresponding to the spin angular momentum is

e
KI = 2—m.fi (2.23)

2/?ze

which differs from the value of the orbital magnetic moment only by the 
factor 2.

The orbital and spin momenta of an electron interact with each other, as well 
as with the momenta of different electrons of the same atom. The interactions 
can be described through the scalar products of the angular momentum 
operators (see Chapter 3). Considering the interactions between two electrons 
labeled i and j of the same atom described by

byti •

cij^i ' $7

a hierarchy is observed among the intensities of these interactions: the coupling 
parameters obey the relations

&ij >

cij >

This leads to the coupling of spins and orbital momenta of different electrons, 
forming the total spin angular momentum (S) and the total orbital momentum 
(L). This is the most common angular momentum coupling, called LS coupling, 
or Russell-Saunders coupling. The spins couple to form the total spin S and the 
orbital momenta couple to form L:

sz —> S

4 L
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In heavy atoms there is a strong coupling between the momenta Zz and st of 
each electron, leading to the total angular momentum per electronj}. This type of 
coupling is called jj coupling. In LS coupling, a pair of values L, S characterize a 
term, denoted by 2S+1X, where X = S, P, D, ..., depending on the value of L.

The total spin and orbital momenta interact through the atomic spin-orbit 
interaction; this is described by the equation

Wj - AL • S (2.24)

L and S combine to form the total angular momentum J
L + S^J (2.25)

and the corresponding quantum number is J. In LS coupling an atomic level is 
characterized by a set L, S, and J. J may take the values

J=\L-S\, \L- S+1|---|L + S- 1 |, | L + S | (2.26)

and the levels defined by these values of J are called multiplets. The projection of 
J along an arbitrary direction is quantized, and the corresponding quantum 
number is Mj, which may take the values

= 1,-J (2.27)

An atomic state is defined by a set of L, S, J, and Mj, or by L, S, J, Ms, and Mj. 
The maximum values of L and S are given by ^2 Zz and ^2 sb but in each atom, the 
ground-state values of L and S follow empirical rules known as Hund's rules'.

1. The combination of that results in the smallest energy, and therefore is the 
most stable configuration, is that for which the quantity 2S + 1 is maximum.

2. When the first rule is satisfied, there are several possible values of L (for the 
same value of 2S + 1); the most stable is the one that makes L maximum.

These values define the ground-state atomic level.
Examples of the quantum numbers for the electrons in two transition ions are 

given below:

ms 2 2 2 2
mi 2 1 0 -1

1 _1 _1 Q — I2 2 2 ° — 2
—2 2 1 ^L = 3

2. Gd3+(4/7) ion: n = 4,1 = 3
1
2

-1
m 1 1 1 1,ns 2 2 2 2
mz 3 2 1 0

5 5 —> S'= 7/2
-2-3 —> L = 0

1. Co2+ (3d1) ion: n = 3,l = 2
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The origin of Hund’s rules is Pauli’s principle, which forbids two electrons to 
have the same quantum numbers. The electrons of parallel spin avoid each other, 
and this reduces the Coulomb repulsion between them. This makes the spins 
couple in parallel, leading to a maximum value of S in the ground state.

When the spin-orbit coupling constant A [Eq. (2.24)] is positive (which is the 
case when the shell is less than half full), the minimum energy configuration is 
obtained for L and S antiparallel, that is, for J = L — S. For a shell more than 
half full, the opposite is true and J -L + S.

The 3d subshell of Co2+ contains 7 of the 10 electrons that it may accom­
modate; the subshell is more than half full, and therefore the ground state is 
characterized by the quantum number J = L + S = | (Fig. 2.2).

The coupling between the angular momenta L and S and between the 
associated magnetic moments /i/ and fis is represented in Fig. 2.3. The orbital 
and spin magnetic moments

Ml = “MlT (2.28)

Ms = (2.29)

add vectorially to form the total magnetic moment //. The total magnetic 
moment /i has a component along J, and a component p! that precesses 
around J and is not effective (Fig. 2.3):

M = M./ + m' (2-30)

The magnitude of the part parallel to J may be obtained from Fig. 2.3:

(2-31)

From J = L + S it follows

L J = 1(J2 + L2-S2) (2.32)

S- J = ^J2 + S2-L2) (2.33)

and therefore, substituting

HB3J2 + S2-L2_ Mb3J(J+1) + S(S+1)-L(L+1)
1 k “T \T\ ~ (2'34) 

writing

Ml = -?MbJ (2-35)
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and thus

(2.36)

(2.37)

(2.38)

I Mj I — ZPbV+ 1)

it follows that g is given by

_ 3J(J + 1) + S(S + 1) — L(L + 1) 
g~ 2J(J+1)

or

, J(J +1) + S(S+1)-L(L+1) 
S=1+ 27(7+1)------------

This quantity is known as the Lande g-factor.
Although we have treated so far L, S, J and /i as vectors, they are in 

fact quantum mechanical operators. Therefore, for example, the measured 
total angular momentum is the expectation value (J) = (J, —
f dv. The expectation value of the magnetic moment (//) is parallel
to (J), as indicated above, since (/i) = The expectation values of /i and J 
are also connected through the g-factor:

M (2.39)

The multiplets of an atom under the effect of a magnetic field are split into 
sublevels characterized by the projection Mj of the total angular momentum in 
the z direction. The magnetic energy is given by1

EMj = -P'j • B = g^MjB (2.40)

In the presence of a magnetic induction of 1 tesla (T) (10,000 G) this energy is of 
the order of 10”23 J « 10”4 eV « 1 cm-1. The thermal energy kT at room 
temperature is of the order of = 0.025 eV, or 200 cm”1.

It was shown in Fig. 2.2 how the atoms in the sublevels characterized by 
different Mj, previously degenerate, possess different energies in the magnetic 
field.

The probability of occupation of the sublevels, or the proportion of atoms of 
momentum Mj, depends on the temperature, and is given by a Boltzmann 
distribution:

_ exp(-EA/j/fcr)
1 3) ^Mj^-EMj/kT) (2-41)

1 The conditions of validity of this expression are discussed in Ashcroft and Mermin (1976).
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L=4 S= j 

~104 cm1
M, u

J=L-S= | 

1870 cm’1

coupling Magnetic interaction

Figure 2.2 Energy levels of the free ion Co2+ (electron configuration 3d7). [Adapted from
J. Crangle, Solid State Magnetism, Van Nostrand Rheinhold, New York, 1991, p. 21.]

We can in general consider the population of the sublevels Mj corresponding 
to the lowest J multiplet, since the next multiplet is usually too high in energy 
compared to the thermal energy kT; every atom is in the ground state 
characterized by the quantum number of the total angular momentum J. In 
the example of the Co2+ ion (Fig. 2.2) J — L + S is the lowest multiplet, and the
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Figure 2.3 Vector representation of the angular momenta L, S, and J, and of their corresponding 
dipole magnetic moments, p,L p,s, and /zj.

next one, J — L + S — 1, is at 1.7 x 1O~20 J = 1.0 x 10-1 eV = 840 cm-1, cor­
responding to a separation of 1200 K. In this case, only the lowest multiplet will 
be populated at room temperature.

The periodic table of elements (Table 2.1) brings to the light the periodicity of 
the physical and chemical properties of the elements as a function of the atomic 
number Z. This regularity arises from the way the electronic configurations vary 
with the atomic number, that is, the form in which the electronic states defined by 
the quantum numbers n and I are filled. Figure 2.4 shows a graph of the variation 
of the atomic radius as a function of the atomic number Z; this radius varies in a 
periodic way, showing minima at values of Z corresponding to the noble gases.

The electronic structure of each element, with very few exceptions, is identical 
to the structure of the preceding element, with the addition of one electron.

The energy of the electron, as a rule, increases with the quantum number /?, 
but it is also dependent on the orbital quantum number /; the ground states are 
those states of minimum energy. The electrons with small I stay a longer time 
near the nucleus, and therefore their energy is lower. In this way, the filling order 
of the subshells [defined by the pair (n, /)], as Z increases, beginning with hydrogen,
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26 Fe (Ar)(4.s)2(3<7)6 7.870 77 Ir (Xe)(6s)2(4/)14(5tZ)7 9.1
27 Co (Ar)(4.s)2(3c/)7 7.86 78 Pt (Xe)(65)'(4/)l4(5</)9 9.0
28 Ni (Ar)(4.s)2(3f/)8 7.635 79 Au (Xe)(65)'(4/)14(5^10 9.225
29 Cu (Ar)(4.s')l(3t/)10 7.726 80 Hg (Xc)(6.s')2(4/)l4(5c/)10 10.437
30 Zn (Ar)(4.s)2(3t/)10 9.394 81 T1 (Xe)(65)2(4/)'4(5^10(6p)1 6.108
31 Ga (Ar)(45)2(3^10(4p)1 5.999 82 Pb (Xe)(6s)2(4/)14(5</)10(6/7)2 7.416
32 Ge (Ar)(4.s)2(3<7)l0(4/?)2 7.899 83 Bi (Xe)(6s)2(4/)l4(5</)10(6p)3 7.289
33 As (Ar)(4s)2(3<f)10(4p)3 9.81 84 Po (Xe)(6s)2(4/)14(5<7)10(6p)4 8.42
34 Se (Ar)(4.s)2(3c/)l0(4/?)4 9.752 85 At (Xe)(6i)2(4/)l4(5<7)l0(6p)5 —
35 Br (Ar)(4.s)2(3<7)l0(4/;)5 11.814 86 Rn (Xe)(6i)2(4/)14(5<7)10(6p)6 10.748
36 Kr (Ar)(4s)2(3</)10(4p)6 13.999 87 Fr (Rn)(7s)' —
37 Rb (Kr)(5s)' 4.177 88 Ra (Rn)(7s)2 5.279
38 Sr (Kr)(5s)2 5.695 89 Ac (Rn)(7s)2(6</)' 6.9
39 Y (Kr)(5s)2(4<7)' 6.38 90 Th (Rn)(7.s)2(6c/)2 —
40 Zr (Kr)(5s)2(4t/)2 6.84 91 Pa (Rn)(7.s)2(5/)2(6t/)1 —
41 Nb (Kr)(5s)'(4<7)4 6.88 92 U (Rn)(7s)2(5/)W —
42 Mo (Kr)(55)'(4tZ)5 7.099 93 Np (Rn)(7i)2(5/)4(6<7)1 —
43 To (Kr)(5.s)2(4t/)5 7.28 94 Pu (Rn)(7s)2(5/)6 5.8
44 Ru (Kr)(5s)W 7.37 95 Am (Rn)(7s)2(5/)7 6.0
45 Rh (Kr)(5s)W 7.46 96 Cm (Rn)(7.s)2(5/)7(6c/)1 —
46 Pd (Kr)(4tf)10 8.34 97 Bk (Rn)(75)2(5/)8(6^' —
47 Ag (Kr)(55)1(4^10 7.576 98 Cf (Rn)(7>s)2(5/)9(6c/)1 —
48 Cd (Kr)(5.s)2(4c/)10 8.993 99 Es (Rn)(7s)2(5/)n —
49 In (Kr)(55)2(4^'°(5p)1 5.786 100 Fm (Rn)(7s)2(5/)12 —
50 Sn (Kr)(55)2(4t/)10(5p)2 7.344 101 Md (Rn)(7s)2(5/)13 —
51 Sb (Kr)(5s)W°(5p)3 8.641 102 No (Rn)(7s)2(5/)14 —

103 Lr (Rn)(75)2(5/)14(6dT)1 —

Source'. Adapted from R. A. Meyers, Ed., Encyclopedia of Physical Science and Technology, Vol. 2, Academic Press, Orlando, FL 
(1987). The electronic configuration for Bk and CF taken from Landolt-Bornstein, Magnetic Properties of Metals, New Series III/ 

go 19fl, Springer-Verlag, New York (1991).
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Figure 2.4 Variation of the atomic radius rof the elements versus atomic number Z, showing the 
periodicity of r(Z). Note the minima at the radii of the noble gases. [Reprinted from R. A. Meyers, 
Ed., Encyclopedia of Physical Science and Technology, Vol. 10, Academic Press, Orlando, FL, 
1987, p. 265.]

is: Is, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, and 6p. Therefore, the energy of 
an electron may be lower in the next (n + 1) orbit, with an orbital number / - 1 
lower than that it would have by entering the n orbit. The (n, I) subshell thus 
remains incomplete.

The elements that present these incomplete shells are called transition elements 
and belong to the groups: 3d (iron group), 4d (palladium group), 5d (platinum 
group), 4f (lanthanides), and 5/(actinides). As opposed to what occurs with the 
closed shells, where the sum of the projections of angular momenta and ms is 
zero, the incomplete shells have nonzero angular momentum, and as a conse­
quence, nonzero magnetic moment. For this reason, the elements important for 
magnetism are the transition elements. An incomplete outer subshell (e.g., 4s), 
however, does not lead to magnetic effects, since the unpaired electron partici­
pates in the chemical bond.

The metallic elements of the Periodic Table may be classified as transition 
metals (already mentioned), as noble metals [those that have just filled the d 
subshell (copper, silver, and gold)], and as normal metals, like aluminum, that 
are formed by adding one electron to the outer shell (4s, 5s, etc).

The rare earths are defined as the set of elements of atomic number between 57 
(La) and 71 (Lu), (i.e., the lanthanides) plus the elements Sc and Y.

2.3 MAGNETIC MOMENT OF AN ASSEMBLY OF ATOMS

The projection of the magnetic moment of each atom, in the direction defined by
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the magnetic field B, will be (we assume B = Bk; the z axis is parallel to (/i), 
i.e., antiparallel to (J)):

AV — (2.42)

where Mj may be J, J - 1,..., -(J - 1), -J.
The average magnetic moment per atom will be, at a temperature T, a sum 

over the sublevels Mj\

= gl'B 52
Mj

(2-43)

where P(Mj\ the probability of occupation of a sublevel characterized by Mj, is 
as given by Eq. (2.41) (Boltzmann distribution). This is a thermal average, and 
we use the notation (• • -)r.

The preceding expression is equal to

— g^B

^Mj exp(gfiBBMj/kT)
Mj

52 ^{gk-BBMj/kT) 
Mj

(2-44)

This function can be put into a more compact form. Making x — g[iBJB/kT 
and v = YImj we see that

52(^/J) exp(xMy/J)
/ Z\ t Mj dv/dx . A.
{^j)t — ----- — -----— ------- (2.45)

2^exp(xM7/J) v
Mj

We may easily compute v, since v is the sum of the terms of a geometric 
progression. Making z — exp(x/J), we obtain

j
v = ^2 zMj = +z + z2 H-------Hz27) (2.46)

Mj=-J

(since Mj — - J, - J + 1, • • •, +J ). 
Recalling that

— &q -F "b ciqx^ -F • • ■ -b a^xn 1 — ——---- j—- (2.47)

we have

(27+1 - 1 
z — 1

2J+l/2 _ z-(J+l/2) 

z1/2 - z-1/2
(2.48)
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exp[(l + l/2J)x] - exp[-(l + l/2J)x] 
exp(x/2J) - exp(-x/2J)

but sinh(x) = [exp(x) - exp(-x)]/2; therefore,

sinh(l + 1/2 J)x 
sinh(x/2J)

Computing the derivative of v, we obtain

dv _ sinh(x/2J)(l 4- l/2J)cosh[(l 4- l/2J)x]
dx [sinh(x/2J)]2

sinh[(l + l/2J)x](l/2J)cosh(x/2J) 
[sinh(x/2J)]2

and from Eq. (2.45):

(2.49)

(2.50)

(2-51)

(2.52)

or

_ dv/dx _ r(l + l/2J)cosh[(l + l/2J)x] 
{Mt - gpBJ—^~ - gM sinh[(l t/27)x]

(l/2J)cosh(x/2J)~ 
sinh(x/2J)

(2.53)

~ gPBJ (2-54)

Finally, we obtain for the projection of the average magnetic moment in the z 
direction, as a function of the parameter x:

{pzj}t — gPBJBj{x) (2.55)

(2.56)

where

gpBJB 
kT
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and Bj(x) is the Brillouin function, defined by

A/W — + 2/^ coth | 1 + J-| x (2-57)

In the special case J =

= 2coth(2x) — coth(x) = tanh(x) (2.58)

We can see in Fig. 2.5 the dependence of Bj(x) on x and J. Experimental

Figure2.5 Plotof the Brillouin function Bj(x) as a function of x = g/iBJB/kT, for J = |,and
J = OO.
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Figure 2.6 Magnetic moment per ion in salts containing the ions Gd3+(J = ^), Fe3+(J = |) 
and Or3* (J = |) measured at different temperatures, versus B/T = kx/gpBJ. The curves are the 
Brillouin functions Bj(x) for the corresponding values of J = S. [Reprinted from W. E. Henry, Phys. 
Rev. 88, 559 (1952).]

results for the magnetization of paramagnetic salts are presented in Fig. 2.6 
(Henry 1952). We note the good agreement between the measurements with salts 
of Gd, Cr, and Fe, and the Brillouin functions for the corresponding values of J. 
The figure shows the magnetic moments described by and
therefore, the curves tend to the saturation value Note also that the 
experimental points fall on the curves independently of the temperature of the 
measurements, depending only on the ratio B/T. The measurements were made 
at T - 1.3 K, T = 2.0 K, T = 3.0 K, and T = 4.2 K.
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In the experiments with paramagnetic samples, with values of B and T 
attained in the most common experimental conditions, the values of 
x — g[iBJB/kT are small. For small argument, coth(x) is equal to

coth(x) = 1 H----- (2.59)

Substituting into Bj(x) [Eq. (2.57)]:

2 J x J -f-1
T + 6j] = 3J X

(2.60)

Therefore, in this limit (small x), the magnetization is proportional to x: this is 
visible through the initial linearity in the graph of Bj(x) (Fig. 2.5).

From this result we may determine the susceptibility, that is, the rate of 
change dM/dH in this region (small x). The volume susceptibility, x, is obtained 
from the knowledge that in a unit volume we have n atoms; the total magnetic 
moment per unit volume (= M) is therefore

, zX TgnBJB{J+\) ng2/j,2BJ(J + V)B
M = n{fij)T = ngfiBJBj(x) a ng^BJ ----- jj— =--—--

The susceptibility is

_ dM _ dM 
X ~ ~dH “ ^~9B

or

_ P'Qng2p?BJ(J + 1) _ C
X ” 3kT ~ T

a relation known as Curie law, obeyed by the susceptibility of many substances; 
C, the Curie constant, is given by

c = (2.64)
3k

When the separation between the multiplets is not much larger than kT, 
deviations from the Curie law are observed. The constant C contains g2J( J + 1), 
which is the square of the effective paramagnetic moment

1 '
1J

1
(1 + l/2J)x

(1 + 1/2/) ..]
3

1
1J

(2.61)

(2.62)

(2.63)

Peff ~ gV/(/ + 1) (2.65)
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4f electron number of ion

Figure 2.7 Experimental values of the effective paramagnetic moment peff for rare earths, in the 
oxides of formula R2O3 (open circles) and in the metals (full circles), as a function of the number of 
4f electrons. The curve corresponds to the values computed with Eq. (2.65).

The values of the moments peff of the rare earths determined experimentally 
are in good agreement with the peff computed with Eq. (2.65). Figure 2.7 shows 
that the moments given by + 1) coincide with those obtained experi­
mentally, for the metallic rare earths and for the R2O3 oxides. The fractional 
deviations are larger in the cases of Eu and Sm; the separation between the lowest 
states and the states immediately above is smaller among all the rare earths 
in the case of Eu3+ (350 cm-1) and Sm3+ (1000 cm1) (Table 2.II). This is the 
explanation for the observed disagreements. To compute the magnetic moment 
of the ions that have a separation between the multiplets comparable to kT, we 
have to take into account the occupation of the higher multiplets, and of their 
magnetic sublevels.

If we compare the effective paramagnetic moments of the transition elements 
of the d series, we will find a large disagreement between the computed effective 
moments peff and the measured moments. The agreement may be recovered if we 
write S instead of J in the expression of peff. This is an evidence of the importance 
of the interaction of these ions with the electrostatic crystalline field (see 
Section 2.7). This interaction, in these ions, is larger than the interaction AS • L 
(spin-orbit). The smaller extension of the 4/shell leads to a partial shielding of
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Table 2.11 Properties of the 3+ rare earth ionsa

z 4/" 3+ Ion L S J g (g-i)W + i) △0(cm ')

57 0 La Ce4+ 0 0 0 0 0

58 1 Ce 3 1
2

5
2

6
7 0.18 2200

59 2 Pr 5 1 4 4
5 0.80 2150

60 3 Nd 6 3
2

9
2

8
11 1.84 1900

61 4 Pm 6 2 4 3
5 3.20 1600

62 5 Sm 5 5
2

5
2

2
7 4.46 1000

63 6 Eu 3 3 0 - 0 350

64 7 Gd Eu2+ 0 7
2

7
2 2 15.75 -

65 8 Tb 3 3 6 3
2 10.50 2000

66 9 Dy 5 5
2

15
2

4
3 7.08 3300

67 10 Ho 6 2 8 5
4 4.50 5200

68 11 Er 6 3
2

15
2

6
5 2.55 6500

69 12 Tm 5 1 6 7
6 1.17 8300*

*3 H4 is lower at 5900 cm 1.
a In this table g is Lande’s factor and Ao is the spin-orbit splitting to the next J level.
Source: Reprinted from R. J. Elliott, in Magnetic Properties of Rare Earth Metals, R. J. Elliott, Ed., 
Plenum Press, London, 1972, p. 2.

this shell to the effects of the crystalline field, making the 4/ electrons relatively 
insensitive to the chemical bonds.

2.4 LANGEVIN PARAMAGNETISM

In the derivation of the expression of the magnetic moment of an assembly of 
atoms (Section 2.3), the quantization of the angular momentum was taken into 
account. If the angular momentum were not quantized, as in the classical case, 
any value of // would be allowed, and the magnetic moments could point 
along any direction in relation to the direction of the external field B.

The projection of the magnetic moment along the z direction in the classical
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case is given by:

// = = /zcos(0) (2.66)

where 0 can take any value between 0 and 7r.
Making the average over 0, one arrives, after some algebra (Exercise 2.5) at 

the expression for the z projection of the magnetic moment

(2-67)

where x = pB/kT and L(x) is the Langevin function given by

L(x) — coth x---- (2.68)

The Langevin function L(x) is therefore the classical analog of the Brillouin 
function. This function describes well the magnetization of small particles 
formed of large clusters of atoms, in systems known as superparamagnetic 
(Chapter 1). In superparamagnets the effective moments are very large, reaching 
105 Bohr magnetons, for instance, and for this reason their magnetization is well 
described by a classical model like that of Langevin (Fig. 2.8).

2.5 NUCLEAR MAGNETISM

The atomic nuclei may also have an angular momentum (/), and therefore a 
magnetic moment, given, in analogy with the electronic case, by

m = g^I (2.69)

where g is the nuclear g-factor and pN is the nuclear magneton, equivalent to the 
Bohr magneton, but involving the proton mass mp:

eh
(2-70)

Since this mass is 1836 times larger than the electron mass, the nuclear magneton 
is smaller than the Bohr magneton, in the same ratio. This fact explains why the 
magnetic effects associated with the nuclear magnetism are much weaker than 
those due to the magnetism of the electrons. The nuclear magnetic moment is 
also written in terms of the gyromagnetic ratio 7 = gp^/h as m = 7/1I.

The vectors I and J combine to form the total momentum F, and the 
interaction between I and J is the hyperfine interaction (see Chapter 6).

The nuclear magnetic susceptibility is given by the Curie law:

+ 1)
3kT

C
T

(2.71)
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Figure 2.8 Experimental variation of the reduced magnetization (MT/Mo) of superparamagnetic 
ferrite particles obtained at different temperatures, versus B/ T; the continuous line is the Langevin 
function. [Reprinted from J. Crangle, Solid State Magnetism, Van Nostrand Rheinhold, New York, 
1991, p. 172.]

where n is the number of nuclei per unit volume. Because the ratio of the 
magnitudes of the electronic and nuclear moments is so large, this susceptibility 
is negligible in comparison to the electronic susceptibility. Usually, it is even 
smaller than the diamagnetic susceptibility. However, at very low temperatures, 
the nuclear susceptibility may be comparable to the latter.

2.6 FERROMAGNETISM

We have so far studied an assembly of atoms whose unpaired electrons, under 
the action of an external field B, occupy nondegenerate energy levels; from the 
unequal occupation of these states arises the existence of magnetic moments

In ferromagnetic materials there is a non-zero magnetic moment (inside a 
domain), even in the absence of an external field. The first explanation for this 
fact, proposed by P. Weiss in 1907, is that each individual atomic moment is 
oriented under the influence of all the other magnetic moments, which act 
through an effective magnetic field.

To obtain the magnetization using this hypothesis, we may follow the same
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steps of the reasoning of Section 2.3, this time assuming that each ion feels, 
instead of B, a field B + Bw, where Bm is this effective field.

The magnetization under a field B, at temperature T, assuming n atoms per 
unit volume (number per cubic meter in the SI) is

(2.72)

The effective magnetic field due to the other ions, or mean field, in the simplest 
hypothesis, due to Weiss, is called the molecular field, and is proportional to the 
magnetization:

(2.73)

where Xm is the molecular field constant, or molecular field coefficient.
The magnetization may be computed as in the preceding case; the moment per 

atom as a function of T is

'■P'i'lT =gnBJBj{x) (2-74)

where x is the equivalent to x — g^BJB/kT of the paramagnetic case, with the 
addition of the molecular field Bw:

(2.75)
K i

Therefore

\IPj)t =gPnJBj \g^BJ B +
kT (2-76)

This expression, which gives the magnetic moment (per atom) as a function of 
the temperature, is more complex than in the preceding case (the paramagnetic 
case), since now is present on both sides of the equation.

Assuming initially B = 0, we have

/ _ gVBJ\nn{A}T
X " kT (2.77)

and

— S^bJBj ( ZTbJ kT ) (2.78)
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Figure 2.9 Graphical solution of the system of Eqs. (2.79). The straight lines are representations 
of Eq. (2.79a) for the temperatures To, T,, T2, T3, and T4. The temperatures 7^, T2, T3, and T4 are 
below Tc, and in these cases the system has two solutions; for temperatures above Tc ,as To, there 
is only the trivial solution (x' = 0, {nzj}T = 0)-

From (2.77), it follows that

g^BJXmn/kT
(2.79a)

and from (2.74)

= gP-BJBj(x') (2.79b)

We may find the values of x and (fij} T that solve the system of equations above 
(2.79) making a graph of ^zj}t [using (2.79b)] and finding the intersections with 
the straight lines that describe (2.79a), for different values of T. This graphical 
method was used by Weiss. Alternatively, we may compute {/ij) T by solving self- 
consistently these equations using a computer.

The graph of the two functions (Fig. 2.9) shows two intersections in the plane 
(x, the solution x = 0, (^j)r = 0 always exists, but of course it is of no 
interest. We may note also that as we approach the solution with tending 
to zero, | d(iij)T/dx | increases, that is, {^zj}T falls more rapidly. The sponta­
neous magnetizations computed this way are shown in Fig. 2.10, under the form 
of reduced magnetization versus reduced temperature T/Tc (Tc is the
Curie temperature). The reduced magnetization is

(2.80)
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T/Tc
Figure 2.10 Reduced magnetization (M0T/M00) versus reduced temperature (T/Tc) for 
different values of the angular momentum J, in the Weiss mean field model.

If we make B 0, the magnetizations may still be computed; now the 
magnetization curves change shape slightly, with a tail that extends beyond 
the ferromagnetic Curie temperature. One can see from Fig. 2.11 that there is a 
finite magnetization above Tc, with B 0.

Just below Tc, Bj(x') is small, and may be approximated by Eq. (2.60):

(2.81)

Using Eq. (2.80), we have

.7+1 , x'kT
37 nXm

which is valid for T tending to Tc (i.e., for a magnetization tending to zero). Thus 
the Curie temperature results:

1 c =-------------37Z------------ (2.83)
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Figure 2.11 Reduced magnetization in the Weiss model, for different values of the applied 
magnetic field.

From this relation we may compute, for a value of Tc determined experimen­
tally, the value of the molecular field parameter Xm. For example, in metallic 
gadolinium (Fig. 2.12), Tc = 293.4 K, S = 7/2, L = 0,g = 2, atomic mass 
M = 157.3, and density 7.9 g/cm3. With N = 6.023 x 1023 mol-1, [jlb = 
9.27 x 10"24 JT-1, 1.381 x 10“23 JK-1, it follows that Xm = 0.742 x
10-4 J-1 T2m3. The molecular field is obtained from the saturation mag­
netization Moo = 2.12 x 106 Am-1; the molecular field at T = 0K is 
Bm = XmMw = 157 T(= 1.57 x 106 G).

Table 2.Ill gives Curie temperatures and magnetic moments per atom for 
some ferromagnetic elements.

A ferromagnet above Tc presents no spontaneous magnetization; in other 
words, it has no magnetization with B = 0. However, under the influence of an 
external field, a nonzero magnetization appears, as in the case of a paramagnet. 
We may measure this magnetic response through the susceptibility x — dM/dH\ 
this quantity may be computed within the Weiss model.
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Figure 2.12 Values of the magnetic moment per unit mass of metallic Gd, as a function of 
temperature. The continuous curve is the magnetic moment given by the Weiss mean field model, 
for J = On the right side of the graph, measurements of the inverse of the susceptibility (1 /x). 
[Reprinted from J. J. Rhyne, in Magnetic Properties of Rare Earth Metals, R. J. Elliott, Ed., Plenum 
Press, London, 1972, p. 132.]

The magnetization in this temperature region is small, and therefore we may 
use Eq. (2.81):

3J
(2-84)

and the magnetic moment with applied field is

(p-j)t = + 1)*' (2.85)

substituting

we obtain

A ------------ (2.86)

(2.87)

Table 2.111 Curie temperature (Tc) and magnetic moment per atom (/iat) of some 
ferromagnetic elements, for different crystalline structures

Element Fe(bcc) Co(fcc) Co(hcp) Ni(fcc) Gd(hcp)

Tc (K) 1044 1388 1360 627.4 293.4
P-ai at 0 K 2.217 1.753 1.721 0.6157 7.56

Source: Reprinted from L. J. Swartzendruber, J. Mag. Mag. Mat. 100, 573 (1991), with permission 
from Elsevier North-Holland, NY.
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With C = p,Qg2ii2BnJ(J + l)/3fc [Eq. (2.64)] it becomes

— —(B + Xmn(p,j)T) 
Mo

(2.88)

and it follows that

CB/^
T — CXm///q

(2.89)

Using H — B/^o we obtain the susceptibility per unit volume x = dMBT/dH\

= 9(Or) = C = C
X dH T-CXm/^ T-9p

with

n _ CXm__§ fj,BnXmJ(J + 1)
p~l^~ 3k

(2.90)

(2-91)

Equation (2.90) expresses the Curie-Weiss law, and 0p is the paramagnetic 
Curie temperature. It should be noted that the paramagnetic Curie temperature 
(0p) is given, in the Weiss model, by the same expression describing the Curie 
temperature (Tc) [Eq. (2.83)]. However, the values for 0p and Tc observed 
experimentally do not show, in general, this coincidence.

Therefore, the behavior of the susceptibility of a ferromagnet above the 
temperature of magnetic order Tc is analogous to that of a paramagnetic 
material, with the difference that 0p is not zero for a ferromagnet.

2.7 CRYSTAL FIELDS

The incomplete electronic shells of the transition elements with nonzero orbital 
momentum (L 0) do not have spherical symmetry. When a transition metal 
atom is located in a crystal, the charges of the electrons in these shells interact 
with the charges of the crystalline lattice—this is the crystal field interaction. The 
crystal field (CF) interaction depends on the orientation of the charge cloud 
relative to the crystal axes. The closed shells practically do not contribute to this 
interaction.

The crystal field interaction represents another term that must be added to the 
hamiltonian of the free ion (or atom), which already contains the electron­
nucleus Coulomb interaction (7YCoui), the electron-electron interaction, and the 
spin-orbit interaction (HLS).
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There are three regimes for the crystal field interaction, defined according to 
its relative intensity:

1. Strong crystal field interaction—observed in the elements of the and 5d 
transition series. In this case

Wcf > ^coul ^LS (2.92)

2. Medium crystal field interaction—observed in the 3d series. We have here

Wcf ~ T^coul ^LS (2.93)

3. Weak crystal field interaction—in the 4/ series (rare earths). The inter­
actions follow the relation

^coul ^LS ^cf

We now discuss how the crystal field problem is formulated for the rare earths, 
therefore, in the limit of weak crystal field interactions.

The most immediate form of obtaining the interaction with the crystal field is 
to start from the computation of the potential energy of the electronic charges qt 
in the potential V due to the point charges of the lattice:

N
Wc = y^qiV{xi,yi,zi) (2.95)

i

The hamiltonian of the magnetic ion, in the presence of the magnetic 
interaction (with the exchange field) and of the interaction with the crystal 
field, is given by

= + (2-96)

The matrix elements of Hcf may be derived from the classical potential energy 
of the charges [Eq. (2.95)], through the substitution x —> xop, y —> jop (the 
position operators) and so on, and summing over all the N magnetic electrons.

A more practical method, the method of the operator equivalents (or 
Stevens’s operators) (Stevens 1952), consists in substituting x —* Jx,y —* Jv, 
and so forth, observing the appropriate commutation rules. For this purpose, the 
products of x, y, and z are substituted by all possible combinations of Jx, Jy and 
Jz, divided by the total number of permutations.

We may give the following as examples:

- rj) = - JO + 1)] = aj^ol (2.97)
i

~ ) 2 x^y 5” Jy^x\ (2.98)
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where &j is a numerical constant for the second-order term that depends on /; for 
the fourth-order term it is (3j and for the sixth-order term, yj. These constants are 
determined by direct integration, and are tabulated.

The interaction is usually written in terms of the operators O™ of order n in the 
components of J; the are numerical coefficients:

= (2.99)
n,m

The operators O™ are polynomials that involve the angular momentum 
operators JZ.J\J+ and J_. The maximum value of n in the hamiltonian is 6 
for f electrons and 4 for d electrons. The presence of the different operators in this 
expression depends on the point symmetry of the sites where the ion is located, 
and on the choice of the crystal axes.

In magnetic samples, the main interaction in the hamiltonian is the magnetic 
interaction. The effect of the crystal field interaction is to admix excited states to 
the ground state defined by the magnetic interaction | J, M = J), leading to a 
reduction in This effect is known as “quenching”; it causes a reduction in 
the magnetization and in the hyperfine field acting on the nucleus of the 
respective ion. One image to describe this effect is that, under the influence of 
the crystal field, the orientation of the electronic orbits varies continuously with 
time, and this leads, in the limit, to a null projection of the orbital moment along 
any direction.

In the 3d series the attenuation takes a different form: since 7Ycf is a strong 
perturbation in relation to the spin-orbit interaction, L and S decouple, and the 
mean value (Lz) is reduced. This explains, for example, why the magnetic 
moments found in the 3d series are nearer to than to g[iB(J}\ in other 
words, the measured moments relate only to the spin angular momentum.

The values of the constants &j, [3j, and 7j, and the expressions of the 
operators O„ may be found in Hutchings (1966).

The higher the symmetry, the smaller the number of operators necessary to 
write the crystal field hamiltonian. For a crystal field of cubic symmetry, only 
four terms suffice:

Hq{ = sM + 501) +^(0^-210^) (2.100)

For hexagonal symmetry in the case of ideal c/a ratio, the hamiltonian is 
written

(2.ioi)
The form of the hamiltonian, the operators that appear in its expression, vary 

depending on the choice of axes. For example, expression (2.100) was obtained 
for the z axis coinciding with the (100) direction. For z || to the (111) direction,
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Table 2.1V Crystal field parameters for some rare-earth metals (in meV)

Rare earth *4 B°6 %

Ho 0.024 0.0 -9.6xl0“7 9.2xl0“6
Er -0.027 —0.7xl0-5 8-OxlO’7 -6.9xl0“6
Tm -0.096 0.0 -9.2xl0"6 8.9xl0-5

Source: Reprinted from J. Jensen and A. R. Mackintosh, Rare Earth Magnetism: Structures and 
Excitations, 1991, p. 114. By permission of Oxford University Press, Oxford, UK.

the cubic hamiltonian is

wcf = -|bM - 20x/2Oi) + y B°6 ( ol + 35^2
4

(2.102)

The attenuation of the magnetic moment due to the crystal field may be 
computed from the complete hamiltonian of the ion, containing the magnetic 
term and the crystal field term [Eq. (2.96)]. The eigenvectors are obtained by 
diagonalizing H, and then computing (/z). For the rare earths, the computed 
angular moments at T = 0 (McCausland and Mackenzie 1980) show the effect 
of the crystal field. Examples are (1) Tb: (J2) = 0.9923 J and (2) Dy: (Jz) = 
0.988 J.

The parameters B% are usually determined experimentally (see Table 2.IV). 
They may also be computed, but this involves a considerable degree of 
uncertainty, mainly because the B parameters contain the terms (rn), and the 
shielding factors. The computation of the ratio between the XT, however, does 
not present these difficulties.

An alternative notation for the crystal field coefficients (Lea 1962) uses 
a parameter x to measure the ratio between the terms of fourth and sixth 
orders:

X F(4)$

1-M
(2.103)

where F(4) and F(6) are tabulated factors for the different 4/ions. With O4 and 
O6 the expressions of the operators of fourth and sixth orders of the cubic 
hamiltonian [in parentheses in Eq. (2.100)], and introducing a scaling parameter 
W (with dimension of energy), we have, for cubic symmetry:

H f = W ( X@4 
cf 1^(4)

(l-|x|)O6\
F(6) J (2.104)
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EXERCISES

2.1 Larmor Frequency of one Electron. Consider one electron subject to a 
Coulomb force, moving in a circular orbit around a nucleus of charge e. 
Write the expression of the total force acting on the electron assuming that 
a magnetic field B is applied, and show that the frequency of the electron 
motion around the direction of the field is given by

2me/ \m„r3) 2m.



60 ATOMIC MAGNETIC MOMENTS

Evaluate the magnitudes of the different terms and make an approximation 
to obtain the Larmor frequency.

2.2 Diamagnetic Susceptibility of Atomic Hydrogen. The ground state of the 
hydrogen atom (Is) is described by the wavefunction — 
(7Tdfo)-1//2exp(-r/d!O) where u0 = h2/mee2 = 0.529 x 10~8 cm. Obtain the 
expectation value of r and r2 for this state, and compute the diamagnetic 
susceptibility of hydrogen.

2.3 Magnetic Moment of Iron. The saturation magnetization of iron is 
1.7 x 106Am-1. Assuming the density of iron is 7970 kg m“3 and Avogadro 
constant is 6.025 x 1026 kg-1, compute the magnetic moment per iron atom in 
units of Bohr magnetons (atomic mass of iron = 56).

2.4 Neel Temperature. Consider an antiferromagnet formed of two sub­
lattices A and B. Let XAB = XBA — —A be the molecular field coefficients 
of the two sublattices and XAA = XBB — X' in each sublattice. Let B be an 
external applied magnetic field.

(a) Write the expression of the total field acting on each sublattice, BA and
b5.

(b) Substituting the expressions obtained in the Brillouin function, make 
an expansion for high temperatures and show that the magnetization in 
each sublattice is given by

7 /l0

and
Mb = ^-(B-AM^ + A'M5)

(c) Making CA — CB — C, show that the Neel temperature is given by 
Tn = C(A ± Xf) (Suggestion: The Neel temperature is the temperature 
for which and M# 0 for B = 0.)

2.5 Langevin Magnetism. Derive the expression for the magnetization of an 
ensemble of classical magnetic moments (Langevin function).

2.6 Relativistic Spin-Orbit Interaction. One electron with velocity v = p/m, 
moving in a central force potential - Vje, feels a magnetic field equal to 
B = —(/z0/4tt)v x E, where E = —VE. Show that the interaction energy 
between the electron spin and the field B may be written

77 = ----- 7——I ■ s = £(r)l • s 
47rmj r dr 
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where 1 = Tzr x p. The result obtained from Dirac’s relativistic equation 
for the coupling constant is two times smaller than the result obtained 
above.

2.7 Crystal Field and Direction of Magnetization Let the crystal field 
hamiltonian be given by

Kf = = ^Jc ~ J1]

where Jc is the component of J along the c direction of the crystal. Let z be 
the direction of magnetization of the crystal (direction of (J)). Considering 
the electrostatic interaction as a perturbation on the magnetic one, show 
that the expectation value of btf in the state | J; J) of Jz is given by

{H& = (J; J | Hqci \J;J) = - l)P2(cos0)

where 0 is the angle between Jc and (J) and P2(cos^) is the Legendre 
polynomial of order 2. Show that if B^O, the direction of magnetization 
will be perpendicular to the c axis and if ${0, M will be parallel to c.

2.8 Quenching of the Angular Momentum of ap Electron. An atom containing 
a single electron in a p orbital is affected by a crystal field with octahedral 
symmetry, due to six equal charges Q located along the axes x, y, and z. The 
charges on the axes x and y are at the same distance r0 from the center of the 
atom (origin of the coordinate system) and those on the z axis are at a 
distance rx.

(a) Show that the dominant term in the crystal field is given by 
Hcf = /4(3z2 — r) and discuss the sign of A.

(b) Writing the p wavefunctions as px = x/(r), py = yf(r) and pz = z/(r), 
find the eigenenergies of the states in terms of A and (r2), the root mean 
square radius of the p orbital.

(c) Assume that a magnetic field is applied along the z direction. Compute 
the 3 x 3 matrix of the total hamiltonian H.

(d) Evaluate the eigenstates of H. In which states is the degeneracy lifted? 
Which state has the angular momentum quenched by the field?





3
INTERACTION BETWEEN 

TWO SPINS

3.1 EXCHANGE INTERACTION

In Chapter 2 we discussed the phenomenon of ferromagnetism, and its descrip­
tion within the Weiss theory, or mean field approximation. In this chapter we 
discuss the interaction between two electron spins that provides the physical 
basis for the onset of ferromagnetic order.

The molecular field postulated by Weiss to describe ferromagnetism remained 
without physical explanation until the birth of quantum mechanics. The 
magnetic fields required by the Weiss model were much larger than those 
associated with the magnetic dipolar interaction, and therefore this interaction 
could not explain ferromagnetic order. The physical phenomenon that is at the 
origin of the ordering of the magnetic ions is the exchange interaction, an 
interaction of electrostatic origin that results from the indistinguishability of the 
electrons. We shall discuss the formulation of the exchange interaction, arriving 
at the Heisenberg hamiltonian, and its connection with the molecular field 
concept (e.g., Patterson 1971).

Schrodinger’s equation is written

w = (3J)

Assuming that the wavefunction can be separated into a spatial and a 
temporal part:

^(r, r) = £(r)T(z) (3-2)

63
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it follows that the spatial part $ obeys

7Y#(r) = E£(r) (3-3)

where E is the energy.
Let us consider a system formed of two electrons, spatial coordinates rb r2, 

spin coordinates crx and <t2, and nondegenerate energy states. Conventionally, a 
can be +1 or -1, corresponding to the z projection of the spin equal to +| and 
- respectively.

The individual wavefunctions satisfy

Wo<^m(ri) = £i¥>m(ri) (3.4a)

and

^iWr2) = E2(p„(r2) (3.4b)

where m and n are quantum numbers labeling the states of the electrons and Ev 
and E2 are the corresponding energies. The hamiltonian for the pair of electrons, 
assuming for the moment that they do not interact, is the sum of the partial 
hamiltonians

74 - 4- TYq (3.5)

From the one-electron wavefunctions one can form

$1 = (3.6a)

and

$2 = (3.6b)

which are eigenfunctions of the total hamiltonian [Eq. (3.3)], with eigenvalue 
Eq — Em 4- En.

We will now assume that there is an interaction between the electrons. This is 
accounted for by introducing into the hamiltonian [Eq. (3.3)] a Coulomb 
potential term F12(rbr2) = e2/r12 to describe it:

H — Hq 4- F12(rbr2) (3-7)

The energy states of the system in the presence of this perturbation are

E — Eq 4- Ei2 (3-8)
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obtained using the unperturbed wavefunctions (I>| and ^>2 and solving

(l|Wo+r12|l)-£ (1|K12|2)
<2|K12|1> (2|«o + K12|2)-E = 0 (3-9)

where |1) and |2) refer to and <f>2, respectively and

(1|^12|2) = y V’m(rl)</:’n(r2) fZ12¥’n(rl)¥7m(r2)^'

= y ^(ri)^^)^!!^^!)^^)^

= <2|K12|1> (3.10)

and dr is a volume element; we have used V21 = K12. We can also show that 
<1|K12|1> = (2|K12|2>.

The eigenvalues obtained from Eq. (3.9) are

— ^0 + ^12 i <712 (3.H)

with

K\i = = <2|K12|2> (3.12a)

Jn = <1|^i2|2> = <2|K12|1> (3.12b)

where A?12 is the Coulomb energy, specifically, the electrostatic energy of 
electrons in the unperturbed states, and Jn is called the exchange integral, 
also measured in energy units. The eigenvectors are

($i ± $2) (3.13)

Experimentally it is observed that the total wavefunctions of the electrons and 
of the totality of the particles with half-integer spin (called fermions, since they 
follow Fermi-Dirac statistics) are antisymmetric; that is, they change sign when 
two particles are interchanged. The particles with integer spin {bosons, from the 
Bose statistics) have symmetric wavefunctions.

We may obtain this antisymmetry by combining a spatial function d with a 
spin function x in two different ways (using subscripts S and A for the symmetric 
and antisymmetric functions, respectively):

(3.14a)
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4>s^i,r2)xA((Ji,(T2) (3.14b)

Thus an antisymmetric x must multiply (j)S and a symmetric x must multiply

From the “spin up” wave function of the i electron a(i) and the “spin down” 
wave function of the j electron /?(/), we can construct the antisymmetric Xa-

^=^Ml)/3(2)-a(2)/3(l)] (3.15)

and the symmetric xs, that can take the forms:

f «(1M2)
Xs=UWW) + «(2)/3(l)]

I /3(l)/3(2)
(3.16)

Thus, there exist, for two spins three symmetric spin functions xs, 
corresponding to a total spin S = 1 (“parallel spins”), and one single anti­
symmetric function xa, corresponding to S = 0 (“antiparallel spins”).

We therefore have two cases:

(j)s and xa giving $ = 0 (singlet)
and xs giving S = 1 (triplet) (3-17)

The sign in Eq. (3.11) is the same as that in Eq. (3.13); if it is positive, the 
spatial part of the wavefunction is symmetric [from (3.13)], and therefore the spin 
function is antisymmetric (H). The state of minimum energy, or ground state, 
will in this case correspond to J n(0 [from (3.11)].

The negative sign in (3.11) corresponds to the symmetric spin function (H); 
the ground state is obtained in this case for y12)0. The two situations are then

<712 < 0 : ground state is U (singlet)
<712 > 0 • ground state is H (triplet)

Consequently, the energy E in these two cases depends on the relative 
orientation of the electronic spins; thus, to represent the interaction between 
the electrons, it suffices to introduce a term in the hamiltonian containing a 
factor

Si -s2 (3.18)

Thus, the connection between the spin and spatial parts is indirect, although 
necessary, imposed by the antisymmetry of the total wavefunction. Because of 
this connection, the effect of the electrostatic interaction between the electronic 
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charges may be described as an interaction between spins. Also, the motions of 
the electrons with parallel or antiparallel spins are correlated; for example, 
electrons of parallel spins tend to avoid each other.

Expanding the spin product, we obtain

Si-S2 = |[(s,+S2)2-S1-S2] (3.19)

For electrons, s = | and

(S?) = (S2) = 1 (3.20)

in units of ft. The brackets (• • •) indicate the expectation value, or the quantum 
average of the operator. The expectation value of the operator total spin squared 
is given by

((s, +S2)2) = 5(5 + 1) (3.21)

This mean value will be equal to 0, for antiparallel spins (5 = 0), or equal to 2, 
in the parallel case (5=1).

The corresponding energies become

E+ = Eo + Kn + J12 for (srs2) = -j (5 = 0) (3.22a)

E_ = Eq + Kn - J12 for (s|.s2) = +i (5=1) (3.22b)

Adding (-2Jr12(s1 -s2) - t0 the first equation and (-2j7r12(s1 *s2) +
JZi2/2) to the second equation (which does not alter them), we obtain the 
equation

= Eq + A?12 - | J12 ~ i2(Si • s2) (3.23)

The conclusion is that the introduction of the interaction term K12 between 
the spins leads to the appearance of a new energy term; this result can be 
accounted for by including in the energy a term dependent on the relative 
orientation of these spins:

-2Ji2(S1.s2) (3.24)

which can be used to express the two energy states of Eq. (3.11) (Fig. 3.1).
In a solid, the hamiltonian describing the interaction is:

W = -2J^2S,-S; (3.25)
i<J
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Figure 3.1 Energy levels of a system of two spins | for y12 >0. The highest energy state 
corresponds in this case to one spin function with S = 0; the lowest state corresponds to three spin 
functions, with S = 1 (threefold degenerate).

where now the sum is performed on each pair of atoms (z, j) and J is an effective 
exchange parameter. This is known as the Heisenberg hamiltonian, and it is 
widely used for the description of many magnetic properties of materials, 
particularly insulators.

In the formulas in this chapter, S is measured in units of h\ otherwise, this 
expression would appear divided by h2.

In the study of the magnetism of the rare earths, since J is a good quantum 
number, the preceding interaction [Eq. (3.25)] is written, using the projection of S 
on the direction of J, a = (g — 1) J, where g is the Lande g-factor:

W =-2 J 52 o-,. a, (3.26)

Expanding the scalar product, the Heisenberg hamiltonian is written

H = -2J^SiSj + + S?SJ) (3.27)

A spin system with a privileged direction, defined, for example, by an external 
magnetic field, or by an axial crystalline anisotropy, may be described by a 
simplified hamiltonian. Its expression is

H = -2jY,siSJ (3.28)

known as the Ising hamiltonian. This hamiltonian accurately describes the 
magnetism of a large number of physical systems.
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3.2 THE MEAN FIELD

We will show the relation between the Weiss molecular field and the Heisenberg 
hamiltonian. We start by describing, with the Heisenberg hamiltonian, the 
interaction of an atom of spin Sz with its z near neighbors:

z

j
(3.29)

Expressing this in terms of the projection a of S on the direction of the total 
angular momentum J, we have

z
Hi = -IJ^tTi-tTj 

j
(3.30)

If there exists spontaneous magnetic order, with magnetization M, we can 
assume that the individual magnetic moments feel a mean field; in the molecular 
field approximation, this is given by AmM, which is proportional to the average 
magnetic moment /z:

AmJVI AmZZ/Z (3.31)

where n is the number of magnetic moments per unit volume and (J) T is the 
thermal average of J. The concept of a mean field (or of a molecular field) is 
applicable if the amplitude of the fluctuations in the magnetic field acting on the 
atomic moments is not very large on a given site, and if it is small from point to 
point.

One can approximate the interaction of the ion z:

(z \
^2 Jy l)2z(J)r-J;. (3.32)

7 /

Equating the exchange interaction of the spin i Eq. [(3.29)] to the interaction 
of the moment /z that is acted on by the molecular field

^mng^B^T ■ M = -2J(g - l)2z(J)r ' J( (3.33)

we finally obtain, using /z = ~g/^B^ and assuming that the sum is done on the z 
near neighbors

C2 2 \ng ^B 1
2z(g-l)2) (3.34)
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From this expression one sees that the exchange integral J is proportional to the 
molecular field constant Xm.

As examples of the magnitudes of J, one can quote jZ(Fe) — 0.015 meV, 
J(Ni) - 0.020 meV.

3.3 INDIRECT INTERACTIONS IN METALS

The values of the magnetic moments of the pure rare earths are approximately 
the same as the values corresponding to the free ions. This happens since the 4/ 
electrons are localized; that is, they have a mean radius (r) much smaller than the 
interionic distance dRR (Fig. 3.2), and therefore are not much affected by the 
chemical bonds. One consequence of this localization is that the mechanism that 
gives rise to rare earth magnetic order is not the superposition of the 4/ orbitals 
in neighbor atoms; other electrons besides the 4/ electrons must be responsible 
for this order. It turns out that the conduction electrons, which have an itinerant 
character, play a decisive role in the ordering mechanism.

The first theoretical treatment of this coupling between the atomic spins 
through the conduction electrons is due to Zener (Zener 1951), who assumed 
three effective exchange constants; one between each atomic spin and its first 
neighbors, another between the atomic spins and every conduction electron, and 
a third connecting each conduction electron to all the others. This can be 
simplified to an effective hamiltonian containing interactions between the

Figure 3.2 Normalized charge density of the electrons in bcc iron and hep gadolinium, as a 
function of the radius (in atomic units). [Reprinted from R. Coehoorn, Supermagnets, Hard Magnetic 
Materials, 1990, p. 140, with kind permission from Kluwer Academic Publishers, Amsterdam.]
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atomic spins S, and between atomic spins and conduction electron spins:

H = -2 £ £ JijSi • S,. - 2 £ J$Sk ■ s, 
i j k<l

(3.35)

where s are the conduction electron spins; this is a first approximation for the 
description of the magnetism of the rare earths.

The Zener model leads to a uniform polarization (or spin density) of the 
conduction electrons.
A more adequate description, however, allows the conduction (or itinerant) 

electrons to have a nonuniform spin density; this can be obtained with a 
susceptibility x(r) that is nonlocal. This is equivalent to a susceptibility x(q) 
dependent on the wave vector q (| q |= 2tt/A) . The polarization of the itinerant 
electrons, in this case, has the form (e.g., Martin 1967):

pWt - p(r)i = cos(q •r) + 5(q) sin(q •r)] (3-36)
q

where ^4(q) and 2?(q) are the Fourier coefficients of the spin polarization. It 
should be noted that although the spin polarization varies spatially, the charge 
density is not affected.

The interaction leading to the preceding result is described by the hamiltonian

W = -2£ja(R,-Ry)SrS7 (3.37)
‘IJ

with the indirect atomic exchange constant Ja given by the Fourier expansion

Ja(R,.-Ry) = £ 
q

X(q)<7(q)2 
4n2g2p2 cos[q ■ (R; - R,-)] (3.38)

This quantity exhibits an oscillatory behavior with the separation between the 
spins, and also an attenuation arising from the q dependence of the amplitude 
X(q)y(q)2 (Fig. 3.3).

The susceptibility x(q) is given as a function of the Pauli susceptibility 
function xp by (see Section 4.2)

fl 4kF - q2 
x(q) = xH5 + ~SM~ln

2k F q
2kF — q

(3.39)

where kF is the value of the wavevector k at the Fermi level.
Making the approximation J7(q) « JT(O), we can obtain, from Eq (3.38), the
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Figure 3.3 Dependence with the distance of the exchange integral Ja(R, - Ry) in the indirect 
interaction in metals, according to the RKKY model.

result of Ruderman and Kittel (1954):

3 R/)
x^(0)2

12™ F(2kF | R, — Ry |) (3.40)

with the function F given by

F(x) = -r (x cos x - sin x) (3.41)

Therefore, ya(Rz- — Ry) oscillates with the distance, with period 1 /2&F, and its 
amplitude decreases as | Rz — Ry |~3. Consequently, the conduction electron 
polarization presents the same oscillatory behavior; this is the most important 
result of the so-called RKKY (Ruderman-Kittel-Kasuya-Yosida) model.

The preceding results were obtained from a susceptibility x(q) of electrons 
that do not interact among themselves. The existence of electron-electron 
Coulomb interactions increases the susceptibility. This fact may be taken into 
account in a simple way. The magnetization due to a field H(q) is

M(q) = x(q)H(q) (3-42)

To include the electron-electron interaction, it suffices to assume that the 
electrons feel a molecular field due to their own magnetization:

M(q) = *(q)[H(q) +vM(q)] (3.43)
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Source: Reprinted from Landolt-Bornstein, Magnetic Properties of 3d Elements, New Series III/19a, 
Springer-Verlag, New York, 1986, p. 39, with permission.

Table 3.1 Enhancement factors {F = 1/[1 - vx(q)]} for some metals

Element Mo Pd Os

F 4.6 9.3 0.4

where v — A//i0 is a molecular field coefficient that measures the strength of the 
electron-electron interaction (/i0 is the vacuum permeability).

Solving for magnetization, we obtain

M(,) = T^(q)H(” (3-44>

from which one can derive a new susceptibility ye(q), called enhanced suscepti­
bility, which includes the effect of electron-electron interactions:

Xe(q) = . . (3.45)1 - uy(q)

One therefore finds that the magnetic response of the electrons in the case where 
they interact with their own magnetization is amplified by an enhancement 
factor F = 1 / [1 — ^x(q)]. This factor attains a value of the order of 10 in the case 
of palladium; Table 3.1 shows some values of F.

Experimentally, positive and negative effective exchange integrals are 
observed. Typical values of J for the 3d elements range from 10-21 to 1O~20 J, 
corresponding to J/k varying from 102 to 103 K.

In metallic systems containing rare earths, one mechanism that may lead to 
negative values of J (Anderson and Clogs ton 1961) depends on the s-f 
hybridization. In other words, it depends on the mixing of s and/ character of 
the electrons, or on the virtual occupation of / states by the a electrons. An 
electron with wavevector k is absorbed in a nonoccupied 4/state, and reemitted 
with wavevector k . This process lowers the energy of the occupied 4/state and of 
the conduction electrons with spin parallel to the localized spin, therefore 
increasing the number of electrons of antiparallel spin to the 4/ spin Sy, and 
this is equivalent to a negative effective exchange parameter J (Fig. 3.4).

3.4 PAIR OF SPINS IN THE MOLECULAR FIELD (OGUCHI METHOD)

In the Weiss model each spin feels the result of the long-range magnetic order of 
the material through the molecular field; the role of the individual spins is to 
contribute to this grand average. The treatment is equivalent to taking into account 
only the time average of the projection of each spin. In real solids, however, 
the motion of a given spin shows strong correlation with the motion of its
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Figure 3.4 Nonmagnetized conduction bands of metallic Gd (spinup and spindown subbands 
represented by k- and kJ showing the full 4f- level (below EF) and empty 4f (above EF). The 
intraband mixing is responsible for the effective interaction, with J < 0. [Reprinted from R. E. 
Watson, in Hyperfine Interactions, A. J. Freeman and R. B. Frankel, Eds., Academic Press, New 
York, 1967, p. 443.]

near-neighbor spins. In fact, even above the critical temperature Tc (the Curie 
temperature in a ferromagnet, i.e., the temperature above which there is no 
long- range magnetic order), some degree of local order is observed; in a small 
region around each spin, the moments remain correlated. A simple model to 
take into account this type of short-range correlation was proposed by Oguchi 
(1955). In this model one spin interacts with one of its neighbors, and this pair 
feels the effects of the other spins through a mean field.

The Weiss model considers a single magnetic moment that is coupled to the 
other moments through a mean field (or molecular field):

Bm = (3-46)

where (• • -)T denotes a thermal average.
This model does not take into account the correlation expected between the 

motions of neighbor magnetic moments. A measure of such correlation is given 
by the order parameter t:

r = -L(J(..J)r (3.47)
J

where i and j label moments at neighbor sites.
In the Weiss approximation, the magnetization for external field Bq = 0 and
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temperature T is given by

(3.48)

where n is the number of magnetic moments per unit volume and Mor is the 
spontaneous magnetization, at temperature T:

</z)r=  ̂ (3-49)
ZI'b"

At r = o

Moo = g^B^J (3.50)

Noting that in the Weiss model, since the motion of each spin is independent 
of the other, • Jy) = (Jz-) • (Jy), we can then obtain the values of the order 
parameter r at different temperatures:

1
, \ 2

Jg^B^JJ

0

for T =

for T <

for T >

0

Tc

Tc (since MqT = 0)

(3.51)

Above Tc the order parameter is zero; in this region there is neither long- 
range order (or magnetization) nor short range order (or correlation between the 
spins in neighbor sites).

This is in disagreement with the usual experimental behavior of 1 / % for T > 
Tc (Fig. 3.5), and of the specific heat Cp; both quantities reflect the consequences 
of local order.

To describe this type of behavior, a model considering a coupled spin pair in a 
mean field was proposed (Oguchi 1955). The starting point is the hamiltonian 
(Smart 1966):

H = -2JSi • Sy - + JZ)B (3.52)

where the first term describes the interaction between the two spins, and the 
second term the interaction of the pair with the total field B = Bk. This is 
equivalent, in terms of the angular momentum operator J, to

'H = -2J{g-\)23i-3j~g^Jzi+Jz)B (3.53)

Defining the total angular momentum operator of the pair

J'= J+Jy (3.54)

and following the same steps of the derivation of the Weiss model (Section 2.3),
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Figure 3.5 Curve of the inverse of the susceptibility of Ni as a function of temperature above Tc; 
the deviation from Curie-Weiss law results from the persistence of local order above this 
temperature.

we derive, for J = |, the value of the z component of J7:

2 sinh(Z?)
1 + exp(-2j) + 2cosh(/>) (3.55)

with

_J(g-1)2 
kT

b = gknB 
kT

(3.56)

The magnetic moment per ion (half the moment of the pair) is

/ Z\ _  SP'B / rfz\ _
W/T— ~2~ )t —

g(j,B sinh(gnBB/kT)
1 + exp(-2v7(g - l)2/kT) + 2cosh(g/iBB/kT)

(3-57)
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compared to the result of the Weiss model, which is, for spin

0) = \gP-B tanh (3.58)
Z Z \ KI J

To describe a ferromagnetic system, we will initially return to the Weiss 
model; this time we will distance ourselves from the approach of Section 2.6 and 
assume that the molecular field is due to the z near neighbors of the spin, as in 
Section 3.2. Then the molecular field constant becomes, from Eq. (3.34)

(3.59)
Mb

Analogously, the molecular field constant in the Oguchi model due to the 
z - 1 neighbors (excluding the one forming the pair with the central ion) is

A^ = ^y(g-l)2(Z-l) (3.60)
Mb

In a similar way to the derivation of Section 2.6, we can obtain the transition 
temperature (Tc) in the Oguchi model, deriving the expression of the tempera­
ture at which the spontaneous magnetization vanishes, in zero external field. 
This is given by the equation

exp(-2jc) 4- 3 = 2(z - l)jc (3.61)

where z is the number of nearest neighbors and jc is the quantity j defined above 
[Eq. (3.56)], for T — Tc. The value of Tc can be obtained, for different values of 
z, by solving Eq. (3.61). It turns out that the values of Tc given by the Oguchi 
model are lower than those given by the Weiss model, for the same J parameters. 
This is a general result; the incorporation of local order effects lowers the 
transition temperature of the magnetic system (Smart 1966).

To obtain the magnetic susceptibility we begin by computing the magnetiza­
tion M5r at temperature T and applied field B. The susceptibility per mole is 
given by

_ dMm _ dMm
Xm (3.62)

and it follows that

2 2
__________________Moff Mb-^__________________
kT^[-2J(g - V)2/kT] + 3) - 2(z - 1) J(g - I)2

(3.63)
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At high temperatures, one can approximate

and xm becomes

exp w-i)2V,
kT J

2J(g~l)2 
kT

(3.64)

Hog2kBN/4k
T-2J(g-l)2z/4k

(3.65)

The numerator in the expression of xm is the Curie constant in the Weiss 
model (for J = |) [Eq. (2.64)], and we may rewrite Eq. (3.65) as

Xm (3.66)

The paramagnetic Curie temperature 0P in the Oguchi model is given by

(3.67)

which is the same result of the Weiss model [from Eqs. (2.91) and (3.60)]. The 
conclusion is that at high temperatures the two models show quantitative 
agreement.

For intermediate temperatures, the approximation Eq. (3.64) is not valid, and 
we find that % tends to infinity as T approaches Tc, but in this case 1 /% is not 
proportional to (T — 0P), that is, the dependence of the inverse susceptibility is 
not linear with T, as seen in Eq. (3.63).

Finally, the correlation function, or short-range order parameter, is given, for 
jx = J2 = 1 and Bq = 0, by the statistical average:

r = 4(JrJy)r (3.68)

T = lEE^V' + 1) - A (A + 1) - Wi + 1)]3>[ ^-Hp/kT)\ (3.69) 
M J

with Z the partition function for the pair. The result is (Smart 1966):

(2cosh(Z?) + 1) - 3exp(-2j) 
(2cosh(Z?) + 1) + exp(-2j)

(3.70)

with b — giiBB/kT and j — J(g - I)2/kT.

C
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Figure 3.6 Dependence of the order parameter r with the reduced temperature kT/J in the 
Weiss model, and in the Oguchi model, showing in the latter the persistence of local order above Tc 
(z = 6, S = |). [Reprinted from J. Smart, Effective Field Theories of Magnetism, Saunders, 
Philadelphia, PA, 1966, p. 42.]

The order parameter r is given, noting that B — 0 for T > Tc:

fl for T = 0 (as in the Weiss model)
< 3[1 - exp(-2/)] 

. [3 + exp(-2j)]
± 0 for T > Tc (3-71)

Thus, the model predicts that the local order subsists above Tc (Fig. 3.6), as 
observed experimentally by the dependence of x(T) or by neutron scattering. 
The Oguchi method therefore overcomes this limitation in the Weiss model, of 
not accounting for local order effects.

There are other models that describe magnetic systems in terms of a pair of 
spins under the action of a molecular field; in the case of the constant coupling 
approximation, for example, this field is not proportional to the magnetization, 
and is obtained from statistical considerations. Instead of a pair of atoms, a 
larger cluster has also been considered; in the Bethe-Peierls-Weiss method the 
cluster has z 4-1 spins under a molecular field.

3.5 SPIN WAVES: INTRODUCTION

In a ferromagnet at T = 0 K all the spins have the maximum projection S in the z 
direction; this is the ground state configuration. As the temperature is raised the
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‘777TVTVVTTT77
—a—

b (O (O) (O < I V

Figure 3.7 Schematic representation of (a) a spin wave propagating along a linear chain of spins 
in the x direction; (b) the same seen along the z direction. [Reprinted from C. Kittel, Introduction to 
Solid State Physics, 7th ed. Copyright © 1995, John Wiley & Sons, Inc., New York. Reprinted by 
permission of John Wiley & Sons, Inc.]

projections are reduced, and a classical image of this effect is shown in Fig. 3.7. A 
wavelike perturbation flows through the spin system: the spin wave. The spin 
wave theory leads to the description of the magnetism of ferromagnets at low 
temperatures, in the regime where Jz = J. We will introduce the spin waves first 
through a macroscopic description, and then show the relation to a simple 
microscopic model.

Let us consider the projection of the magnetization Mz(x) varying continu­
ously from point to point; if the magnetization deviates from its saturation value 
at a given point, a torque M(x) x A V2M(x) acts on the magnetization, and the 
equation of motion is (Martin 1967)1:

-M(x) = M(x) x 3V2M(.x) (3.72)
7

where A = D/with Mq the saturation magnetization and D a parameter 
called “stiffness constant”, which measures the strength of the tendency of 
aligning the local magnetization to recover its saturation value; 7 is the 
gyromagnetic ratio of the atomic moments //:

M = 7/zS = vM (3.73)

In this expression, M is the magnetization and v is the volume occupied by one 
atom; dividing by v, we obtain the expression for the spin density <S(x) in terms of 
the local magnetization M(x):

= ® (174>

We look for the deviations m from the uniform magnetization Mo:

m = M - Mo (3.75)

1 The laplacian of a vector M is a vector of components V2MX, \/2My, and V2MZ.
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The solution of Eq. (3.72) gives

m = m0(sincjfi + coscj/j) sin(k • r) (3.76)

with

w = (3-77)n

where k is the modulus of the wavevector.
We will now discuss the spin waves within a microscopic model. The 

Heisenberg hamiltonian predicts that the lowest energy state (the ground 
state) of the spin system corresponds to a configuration with all spins aligned 
in parallel. It is easier to show this fact if we write the hamiltonian in terms of the 
operators

S+ = Sx + iSy (3.78a)

S = Sx - iSy (3.78b)

where i = ■/—T. The hamiltonian becomes

Nz
•K =+ S=S;} (3.79)

i<j

Using the matrix form of the spin wavefunctions (the eigenvectors of S=)

Xa y 0 y X/3 y 1 y

and of the spin operators (the Pauli matrices)

„v_a/o i\ oj>_Vo -A
2 \ 1 0J 2\i 0 )

and recalling the rule of matrix multiplication

(a b \ f e\ _ f ae + bf \
ye d J yf J yce + df J

we obtain

S+Xa = o, s~X/3 = o

(3.80)

-V1 0 13 811
-2(0 -1) (3'81)

(3.82)

(3.83)
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and the property that justifies the notation for the spin operators, with super­
scripts + and - is:

S+X/3 = fyia, S Xa= ^Xp (3.84)

This means that the operator S+ applied to a function corresponding to spin 
-1 transforms the function to that of spin +conversely, S~ inverts the spin 
from +1 to —

The total spin wavefunction for a system of N aligned atomic spins is the 
product of the individual functions:

X = * * * XaW (3.85)

Using the properties of the spin operators and x functions described above, it 
is easy to demonstrate that the preceding wavefunction [Eq. (3.85)] satisfies 
Schrodinger’s equation:

Hx = -h2^NZX (3.86)

It can be demonstrated that this function corresponds to the minimum energy, 
that is, to the ground state. This is done by noting that the maximum value of 
(Sz • Sy ) is /z2/4, and therefore the minimum of the energy

£ = -2j££(S,-S/) (3.87)
i J

is /4)Nz, in agreement with the preceding result [Eq. (3.86)]. We conclude 
that the perfectly aligned configuration is the ground state for J > 0. A set of 
spins coupled ferromagnetically is aligned in parallel at 0 K.

We will now discuss the excited states of the spin system. A spin system in 
thermal contact with a thermal reservoir (e.g., the lattice in a solid) will not be in 
its ground state configuration, if T 0. Assuming that the excited states are 
characterized only by changes in the orientational state of the spins, the 
excitation will imply a reduction in the spin projection along the quantization 
direction: as the temperature is raised, the z component of the magnetization M 
decreases.

We may describe this process with a classical image of spins precessing around 
the z direction with an angle 0 that varies along the x direction. In energy terms, 
this form of excitation is less costly than the reduction of the magnetization 
through inversion of spins (Fig. 3.7).

We will consider a system of N spins, each one interacting with z neighbors, 
and in the presence of a magnetic field B. The hamiltonian is (assuming only spin 
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angular momentum, i.e., J = S):

H = (3.88)
z j i

Let us take, for simplicity, a one-dimensional spin system; in this case z — 2. 
Neglecting the second term, that describes the interaction of the spins with the 
field B (Zeeman term), we obtain for the energy of the spins, in the classical limit 
(at T = 0):

Ej =-2(Af-l)ys2 (3.89)

If instead of a spin system with all spins aligned, one had N - 1 aligned spins 
and one antiparallel spin, the energy would be

E2 = -2(N - 3) J'S2 + 2 x 2JS2 (3.90)

This energy is larger than that in the ferromagnetic case (preceding case); the 
difference is

AE = E2-E{=8JS2 (3.91)

We will show that the spin can take excited configurations with energy much 
lower than the preceding energy, if spin waves are created. The classical 
expression of the energy of the spin of number p, in a linear chain, interacting 
with two nearest neighbor atoms [(p - 1) and (p + 1)] is

Ep = -2JSp_. • S, - 2JSp • Sp+1 = -2^-! + SM1) • S, (3.92) 

which is equivalent to

2J
Ep ~ ~ (S/2-1 "b Sp+l) ' gP'B^p ~ Bp • }lp

g^B
(3.93)

where B/? is the field due to the neighbors, acting on the moment p.
Equating the rate of change of the angular momentum hSp to the torque 

pLp x B/?, one obtains

hsp - 2JSp X (Sp_, + Sp+1) = 2JSp x ^S,- (3.94)

where the sum is done over the z neighboring spins in the linear chain. Looking
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Figure 3.8 Magnon dispersion relation obtained by inelastic neutron scattering in RbMnFe3 at 
4.2 K; the curves are calculated for different directions. [Reprinted from C. Kittel, Introduction to 
Solid State Physics, 7th ed. Copyright © 1995, John Wiley & Sons, Inc., New York. Reprinted by 
permission of John Wiley & Sons, Inc.]

for solutions of the type

Sp = U ewp[i(pka — wt)] (3.95a)

Sp = V &Mp[i(pka — utf)] (3.95b)

where a is the lattice spacing, U and V are constants, and p is an integer, we 
obtain the condition

fa(k) = 4 JS[1 - cos(Ayz)] (3.96)

The function is called a dispersion relation’, this is its expression for spin 
waves (Fig. 3.8). We made the approximation Sp, Syp S and Szp = S, valid for 
small deviations of the spins from the equilibrium position. We also obtain 
V — — i U, which shows that the motion of the spins is a precession around the z 
axis. The angular momenta precess around the direction z, and this excitation 
propagates along the chain in the plane (x, y).

In the limit of long wavelengths, since k = 2%/A, h« 1. (1 - cos ka) = 
2 sin2(Zxz/2) « | (ka)2 and the dispersion relation becomes

Aw = IJSak2 (3.97)

This is the same as (to be shown below):

Aw = DA2 (3.98)

where D is the spin wave stiffness constant.
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In the quantum description the total spin quantum number of the set of N 
spins may have values NS, NS — 1, NS — 2, and so forth.

Therefore, the z component of a spin is Sz given by [using Sp and Syp of Eqs. 
(3.95)]:

____________ I------------------------- r rZ

sz = Vs2 - Sx2 - S?2 = J(S2 - U2) s - —
’ ^13

(3.99)

for small values of U/S.
The number N(S - Sz) that gives the reduction in the projection of the total 

spin in the z direction can attain only integer values. If this reduction is 
associated with the appearance of nk spin waves of wavevector k, and each 
wave reduces the spin of one unit, we have

I j
N(S — Sz) = N ~ = nk (3.100)

Zd

or

= (3.101)

The energy of interaction of N pairs of spins is

N
E = -2 J ^2 S/> • sf = cos <f> (3.102)

The angle </> is given (Fig. 3.9) by

•sm- —
2

U sin(A:a/2) U . ka (3.103)

For U/S 1, using cosx = 1 - 2sin2(v/2), we obtain

(U\2 . 2ka
— sm —-

\Sj 2
(3.104)

and the energy is

E = -2JNS2 + 4JNU2 sin2y = -2 J NS2 + 2J;VL;2(I - cos At/) (3.105)

Therefore the excitation energy of a spin wave is

ek = 2JNUk{\ -coste) (3.106)
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Figure 3.9 Neighbor spins in a ferromagnet along the direction of propagation of a spin wave. The 
projections of the spins form an angle of ka radians.

But, from (3.101):

ek — 4JSnk(\ — cos kd) (3.107)

From (3.96), it follows that the excitation energy of the spin waves is

ek = nkhwk (3.108)

The spin waves are therefore quantized, and the quanta are called magnons’. nk 
is the number of magnons of wavevector k. The number of magnons nk in 
thermal equilibrium at temperature T follows a Planck distribution:

=L-ta , (3-109)
exp(nwk/kT) - 1

Summing the reduction in magnetization due to all the magnons and dividing 
by the maximum value of the magnetization, we may obtain its relative variation
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(Exercise 3.3):

(kT\3/2
~Mq ~ ~NS~ \2JSj (3.110)

This characteristic dependence of the magnetization, proportional to T3''2, is 
a result confirmed experimentally at low temperatures for many systems and is 
known as Bloch's T3^2 law (Fig. 3.10).

One can establish a link between the preceding microscopic description of 
spin wave phenomena using the Heisenberg hamiltonian, and the phenomen­
ological discussion in terms of the local magnetization introduced at the 
beginning of this section. To do this, we expand the spin density function in a 
Taylor series around the atom of order p:

-(^p-1 +SM1) = «) +<S(x + fl) 2S(x)p + a2

(3.111)

Figure 3.10 Variation of the spontaneous magnetization of Gd as a function of temperature, 
exhibiting a dependence of the form ex 7"32, characteristic of the contribution of spin waves. 
[Adapted from N. W. Ashcroft and N. D. Mermin, Solid State Physics. Copyright © 1976, 
Saunders College Publishing, Orlando, FL. Reproduced by permission of the publisher.]
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or

^S,K25(4 + a2V>) (3.112)

where S(x)P is the spin density at the spin p, v is the volume that contains the 
atom with this spin, and a is the lattice parameter of the linear chain.

Substituting the expansion into the expression of the torque acting on the spin 
p [Eq. (3.94)], we obtain

hsp = 2JSp x v[2S(x)p + a2S7pS(x)] (3.113)

The first term of the vector product is zero since S(x)p is parallel to Sp; we then 
have:

HSp = 2JSp x [a2vV2pS(x)] (3.114)

or

hS(x) = 2JS(x) x |oV2S(x)] (3.115)

Using (3.74)

5(.v) = X^ (3.116)
777

we can express Eq. (3.114) in terms of M; comparing with the equation of motion 
of M [Eq. (3.72)] the following relation is then apparent

D = 2Ja2S (3.117)

where S is the spin.
This equation embodies the connection between the two approaches to 

the spin wave problem: the microscopic description using the Heisenberg

Table 3.11 Spin wave stiffness constants D for 3d metals at room temperature (in meV A2)a

Element Fe Co Ni

D 280 510 455

a To convert to joules square meter (J m2), multiply by 1.60219 x 10~42.
Source: Reprinted from E. P. Wohlfarth, in Ferromagnetic Materials, Vol. 1, E. P. Wohlfarth, Ed., 
North-Holland, Amsterdam, 1980, with permission from Elsevier North-Holland.
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hamiltonian and the phenomenological discussion through the local magnetiza­
tion M(x); it shows that the stiffness constant D (see Table 3.II) is proportional 
to the exchange constant J.
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EXERCISES

3.1 Magnon Dispersion Relation. Show that for a simple cubic lattice with 
z — 6 the magnon dispersion relation [Eq. (3.96)] becomes

hue — 2JS z — y^cos(k • 6)
6
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where 6 is the vector that connects the central atom to each nearest 
neighbor. Show that for ka < 1,

fa « 2JSa2k2

where a is the lattice parameter.

3.2 Magnon Specific Heat. The total magnon energy is given by the sum of 
the energies of each magnon multiplied by the number of magnons in the 
state k\

[/ = £ nkfa = I d3k^lkT_x

Using the approximate relation cj = evaluate U for low temperatures 
and show that

3.3 Bloch T^2 Law. The thermal excitation of spin waves reduces the 
saturation value of the magnetization according to

\ k

Show that at low temperatures, when w(k) « Ak2

M(T) - M(0) 3/2
M(0)



MAGNETISM ASSOCIATED 
WITH THE ITINERANT 

ELECTRONS

4.1 INTRODUCTION

The hypothesis of itinerancy of the electrons may be used to describe the magnetic 
properties of the metals. Itinerant electrons are electrons that do not remain bound 
to a given atom, but instead move across the whole matrix. This description applies 
to the behavior of electrons in metals. Within this hypothesis one may explain, for 
example, the temperature-independent paramagnetism (Pauli paramagnetism) of 
the alkali metals (Li, Na, K, Rb, and Cs), and the ferromagnetism of the metals of 
the 3d transition series (Fe, Ni, and Co) and their alloys.

The itinerant electrons occupy states with a (quasi-) continuous distribution of 
energy; these states appear as we form a metal by putting together the isolated 
atoms, as illustrated in Fig. 4.1. Initially (r = oo) there are only atomic states; as the 
atoms approach each other, the originally sharp atomic energy states broaden. For 
the equilibrium atomic separation (r = r0) there is a superposition of the energy 
range of the 4s and 3d electrons (in the example in Fig. 4.1, which shows 
schematically the situation of metallic Fe), forming bands. These band electrons 
are delocalized, in the sense that they are shared by all atoms of the crystal.

In the elements of the iron group, the 3d electrons are responsible for the 
magnetism; the 4s electrons give a smaller contribution to the magnetic proper­
ties; this is evident, for example, from the values of the corresponding magnetic 
moments per atom (Table 4.1).

The itinerant character of the 3d electrons, responsible for the magnetism of 
the elements of the iron group, contrasts with the localized behavior of the 4f 
electrons, which play the same role in the rare earths. In the actinides, whose

91
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Figure 4.1 Schematic representation of the broadening of the energy states of 4s and 3d 
electrons in metallic Fe, as a function of the separation r between the atoms. As the atoms 
approach each other to form the crystal (with the equilibrium distance r = rQ), the atomic states give 
way to states that overlap in energy, forming bands.

magnetism arises from the incomplete 5f shell, the situation is more complex— 
the degree of localization varies along the series. For a comparison of the spatial 
behavior of the 3d, 4f and 5f shells, see Fig. 4.2.

The band structure differs for normal metals, noble metals, and transition 
metals (Section 2.2.1). This can be seen in the schematic representation of the 
curve of energy-wavevector k (the dispersion curve) and density of states- 
energy curve. This is shown in Fig. 4.3; the closed shells are atomic-like states 
that appear in the low energy part of the plots (the straight lines in the graphs). 
The conduction electrons appear in the upper part, forming parabolic bands in 
the density of state graphs. The d electrons, represented by a sharper peak in the 
h(E) curves, are located at low energy in the normal metals, at intermediate 
energies in the noble metals, and at higher energy in the transition metals. The d 
band is split for the noble and transition metals, and the upper subbands overlap

Table 4.1 Magnetic moments of iron, cobalt and nickel, and d and s contributions 
measured from the diffraction of polarized neutrons

Source: Reprinted from E. P. Wohlfarth, in Ferromagnetic Materials, Vol. 1, E. P. Wohlfarth, Ed., 
North-Holland, Amsterdam, 1980, p. 34, with permission from Elsevier North-Holland.

Fe Co Ni

Total magnetic moment (/ig) 2.216 1.715 0.616
Moment of 3d electrons (/i5) 2.39 1.99 0.620
Moment of 4s electrons (/ig) -0.21 -0.28 -0.105
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Figure 4.2 Ratio of the average radius of the incomplete shells to interatomic separation for 3d 
electrons of Fe, for 4f electrons of the lanthanides (Ln), and 5f electrons of the actinides (An), 
versus Z. Note the large difference in the ratio for Fe and for the rare earths, and the marked 
dependence of the ratio with Z, for the actinides. [Reprinted from Landolt-Bornstein, Magnetic 
Properties of Metals, New Series lll/19fl, Springer-Verlag, New York, 1991, p. 2, with permission.]

with the conduction electron energy in both cases. The upper subband is at the 
Fermi level in the case of the transition metals.

The dispersion relation for noble metals shows deviations from the unper­
turbed shapes where the two bands cross, a phenomenon known as hybridization.

4.2 PARAMAGNETIC SUSCEPTIBILITY OF FREE ELECTRONS

The simplest itinerant electron model is that of a gas of free electrons, that is, a 
gas of electrons that interact neither with the atomic cores nor among them­
selves. The expression for the total density of energy states of this gas (Fig. 4.4), 
having only the constraint of being contained in the volume F, is obtained from 
the Schrodinger equation, and is given by (Exercise 4.5)

\ 3/2 
N(E) = 47rr( —£1/2 

\ h1 J
(4-1)
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Figure 4.3 Schematic representation of (a) the density of electronic states n(E) and (b) curve of 
E(k) (dispersion curve) of a normal metal, a noble metal, and a transition metal. [Reprinted from M. 
Geri, in Metaux etAlliages, C. Janot and M. Geri, Eds., Masson et Cie, Paris, 1973, p. 91.]

where me is the electron mass and E is the energy. Each state may be occupied by 
at most two electrons, one with spinup (ms = +1) and another with spindown 
(ms = -1). At T — 0 K, all the states up to EF, the maximum energy (called the 
Fermi energy), are occupied by two electrons each, and the total number of 
electrons in the volume V (free-electron gas) is

N = [ ' N(E}dE = ^vC1yF\ 1 [ F El/2dE = ^^(^F\ ‘ (4.2)
Jo \ /r J Jq 3 \ /r /
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Figure 4.4 Density of states A/(E) as a function of the energy, for a gas of free electrons at 0 K 
[Eq. (4.1)], and at a temperature T. The states are occupied up to the Fermi energy EF.

Substituting the expression of N [Eq. (4.2)] into (4.1), we may write the density of 
states as a function of the total number of electrons N:

N(E) = 4^F(^) 
\ h )

3/2 T I N \£,/24 4 £1/2
4 \ F3/2 I\^F /

(4-3)

The density of states curves for real metals can be much more complicated 
than indicated in Eq. (4.3); a curve computed for bcc iron is given as an example 
in Fig. 4.5.

The probability that a state of energy E is occupied by an electron at a 
temperature T is f(E\ the Fermi-Dirac function 

exp[(E - n)/kT] + 1 (4-4)

and f — is the chemical potential, which at T = 0 K is identical to the 
maximum energy EF (Fermi energy) (Fig. 4.4, Fig. 4.6). EF is of the order of a few 
electronvolts, and kT at the usual temperatures, is of the order of 10~2 eV; at 
room temperature (T = 300 K), we have kT = eV.
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Figure 4.5 Computed density of states A/(E) per atom, for bcc iron, as a function of the energy, 
in Rydberg units (1 Ryd = 2.18x 1018 J). The energy origin is at the Fermi level. [Reprinted from 
E. P. Wohlfarth, in Ferromagnetic Materials, Vol. 1, E. P. Wohlfarth, Ed., North-Holland, 
Amsterdam, 1980, p. 7, with permission from Elsevier North-Holland.]

In the expression of the total density of states NfE), the electrons have only 
kinetic energy, since we are dealing with a gas of free electrons—the potential 
energy is zero. If we apply an external magnetic field of induction a term of 
magnetic energy appears, corresponding to for the electrons with
magnetic moment up, and for the magnetic moment down electrons 
(the unbound electrons have only spin moments). The total number of electrons 
per unit volume n = + ny, of course, does not vary, only is now different
from ny. Noting the definition of EF of the figure (Fig. 4.7), we may observe, 
using h(E) = N(E)/V, that

Z
Ef cEf+^bB®

n(E + p^B^dE — I n(E)dE (4.5a)
J 0

and
pEF rEp-p^B^

n\ n(E — ^BBo)dE — n(E)dE (4.5b)
Jq
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Figure 4.6 Fermi-Dirac distribution [Eq. (4.4)], which gives the occupation of the electronic 
states at a temperature T, drawn for T = 0 K and T 0 K.

The resulting magnetization is given by

(4-6)M = - «;)

which is equal to

r /•() pEf+^bBq

n(E)dE+ n(E)dE\=\nB n(E)dE (4.7)
JEp—^bBq J JEf—FbBq

By the fundamental theorem of integral calculus, the preceding integral, 
between EF - s and EF + s (where s = iibBqY in the limit e 0, is equal to the 
integrand (at the point E = EF) times 2s = 2/zB2?0- Thus

(4.8)

and the susceptibility at 0 K, given by dM/dH = p^dM/dB^ is then

Xo = dodBn(Ep) (4-9)
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Total energy 
(kinetic + magnetic)

Figure 4.7 Density of states of a gas of free electrons with magnetic moments parallel (t) and 
magnetic moments antiparallel Q), to a magnetic field Bo. Note that nT n[t from which follows that 
the system has a net magnetization M = /zB(nT - nJ.

This is the Pauli spin susceptibility of an electron gas at absolute zero. This 
susceptibility is proportional to the electron density of states at the Fermi level.

At temperatures above 0 K, the proportion of occupied electron states as a 
function of temperature; in other words, the statistics, has to be taken into 
account and we have to make the convolution of the density of states function 
with the Fermi-Dirac distribution f(E\ which gives the probability of occupa­
tion of the states at temperature T. The number of electrons with magnetic 
moments parallel to the magnetic field (up) and antiparallel (down), per unit 
volume, is now [making the change in variables as in Eqs. (4.5)]

«(£)/(£ - nMdE

n(E)f(E +/2BB0)dE

(4.10a)

(4.10b)

In the particular case of a gas of free electrons, the density of states is given 
by the expression (4.1). Substituting n(£) = N(E)/V in Eqs. (4.10), and using
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Eqs. (4.3) and (4.4):

_ 3 / n \ f°° EmdE
T 4 Jo exp[(E - hbB$ - n)/kT] + 1 (4.11a)

or

n
x}^2dx

exp(jr - e) + 1
(4.11b)

with x — E/kT and s = (/i5F0 + p)/kT. Writing

xX/2dx
exp(jr - e) + 1 (4-12)

the total number of electrons per unit volume becomes

3n
n = - —

kT\3//2 /PbBq + /A 
EF) L \ kT J

i + /A
+F(“—f.. ) (4-13)

and the magnetization becomes

M = - nJ = kT\ 3/2 fPbBq + /A _ p(~PbB$ + /A 
EF) [ \ kT ) V kT )

(4-14)

The integrals F(ri) may be calculated numerically, and were tabulated by 
McDougall and Stoner (1938). From the expression of M it can be shown, 
expanding in series the function F, that the susceptibility becomes (Exercise 4.1)

X = lE>An(EF) (4-15)

where = Xo [Eq. (4.9)].
Since kT <C EF, one can see from Eq. (4.15) that the susceptibility x f°r a gas 

of free electrons (called Pauli susceptibility) is practically independent of 
temperature, and is given by

X = HoAntEp) (4-16)

The Pauli susceptibility is small, of the order of the diamagnetic susceptibility.
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This means that increasing the temperature excites the electrons of the two 
subbands approximately in the same way, creating no spin imbalance.

4.3 FERROMAGNETISM OF ITINERANT ELECTRONS

A simple model for the description of transition metal ferromagnetism is the 
Stoner (1938) model, which treats the electron-electron interactions within the 
mean field approximation.

Analogously to the treatment of the magnetism of localized electrons, one can 
obtain the magnetization of the itinerant electrons, as in the previous section, 
and then add another magnetic field (the molecular field) to Bo. Before we do 
that, however, we will discuss the condition the conduction band parameters 
have to satisfy to order magnetically; this is the Stoner criterion.

4.3.1 Magnetization at T = 0 K: The Stoner Criterion

A split band with electrons up and down has a magnetization given by Eq. 
(4.6). Its interaction with a molecular field Bm is described by

Kn = ~ - «1) (4.17)

or

Kn = -5Am/ifi2(wT - wj2 = -lAm(uB2(M2 - 4nT«|) (4.18)

where we have used n = + n^. The factor | in (4.17) arises from the fact that
Hm describes the interaction of the magnetization with a molecular field 
produced by the same magnetization.

We can see that Hm has two terms: one constant («2) and another in n^n^. We 
will retain only the last term; then

Hm = 2Un]n[ (4.19)

where U — X^B2 is the Stoner, or Stoner-Hubbard parameter.
Since = n/2 for the nonmagnetized band, the variation in magnetic 

energy Em as the band is magnetized is

1 ~ 1 ~ /TU — Mi \ 2
&Em - 2Un]n[ - 2U-n2 = ~V-n2{ T.(4.20)

The magnetic moment per electron, or relative magnetization (in /iB) is Q.

( = (4.21)
n
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and we have

A£w = -C/1»2(2 (4.22)

and
n„T=-(l+0 (4.23a)

(4.23b)

When the electron gas is magnetized, the split subbands f and 1 are shifted 
26 E in relation to one another. The change in kinetic energy corresponds, as 
shown in Fig. 4.8, to lifting the shaded region of the moment down subband to 
occupy the position of the shaded region in the moment up subband. The area of 
each region is | — nJ, and the vertical displacement is 6E.

The total variation in kinetic energy AEk is then

= = (4.24)

Figure 4.8 Density of states of a gas of free electrons with parallel moments (t) and antiparallel 
moments (1). Under an applied magnetic field, the area of the shaded region in the down subband 
(right-hand side) is transferred to the top of the up subband; its final position in the latter subband is 
also shown.
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Therefore, the total variation in energy as the band is magnetized will be

△Er = + AEfc = - e|h2C2 + (4.25)

Since

n{EF)dE = (z2T - nf) = nC> (4.26)

we substitute bE into Eq. (4.25) and obtain

△£r = _C/l„2<2 + <_<
2 2n(EF)

or (4.27)
n2

From this equation, one can derive the following condition: 

f If [1 — Un(EF)] > 0, then ET is minimum for zero magnetization (£ = 0)
[ If [1 — Un(EF)] < 0, then ET is minimum for nonzero magnetization (£ / 0)

(4.28)

This means that the condition for spontaneous magnetic order (i.e., for £ 0) is

[1 - UnfEf)] < 0 (4.29)

a condition known as the Stoner criterion for ferromagnetism. From this 
condition, one sees that ferromagnetism is favored for strong electron-electron 
interaction (i.e., large C) and high density of states n(EF} at the Fermi level. 
Computed values of [1 — Un{Ejf\ give -0.5 to -0.7 for Fe, -1.1 for Ni, and +0.2 
for Pd (Wohlfarth 1980).

The ferromagnetic transition metals may have different degrees of occupation 
of the spinup and spindown subbands: the strong itinerant ferromagnets have 
only one incomplete subband, and the other totally filled (e.g., nickel); weak 
ferromagnets (e.g., iron) have both subbands incomplete (Fig. 4.9).

4.3.2 Magnetization at T 0 K

In the Stoner model the electrons with moments up and moments down are 
under the effect of magnetic fields B- and If that include the external field Bq and
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Figure 4.9 Density of states curves for 3d electrons with spinup (T) and spindown (|), in the 
following situations: (a) paramagnet, (/?) weak ferromagnet, and (c) strong ferromagnet.

a molecular field XmM\

By — By — Bq XM (4.30)

In the absence of an external field, using the magnetization per electron 
C = («T - nQ/n = M/n[iB

B = B — ~ \nnl'nQ (4-31)

Using O', a molecular field parameter (proportional to Aw) with dimension of 
temperature

0l = (4 32)

with k the Boltzmann constant, the magnetic field becomes

= (4-33)

The energy of one electron in each subband in the molecular field is

£t = Ek - kO'C (4.34a)

El = Ek + ke'C (4.34b)

where Ek is the kinetic energy. Equations (4.10), in the Stoner model for 
ferromagnetism, become

|n(E)f(E - hbB0 - k3'C,)dE (4.35a)
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= 2 + ^bB0 + ke'QdE (4.35b)

In the case of Bq = 0, and for free electrons, we have, using the preceding 
expressions for n and M [Eqs (4.13 and (4.14)] with e — (k0'( + p)/kT

3 „ (kT\3/2 h (ke'<+V F (~ke^+4n\E;) r[^7~rF[^7~) (4.36)

3
M = -nnB

'kT\3/2 ''(kex + p: 
F\^r~

-kefc + p\' 
kT J (437)

Solving numerically the integrals for BQ 0, we obtain the (volume) magne­
tization M, or the magnetization per unit mass a(B0, T) = M/p, where p is the 
density, or the reduced magnetizations £ = cr(2?0> T)/cr(0,0) and the suscept­
ibilities.

The results obtained are shown in Figs. 4.10 and 4.11. The magnetization 
curves obtained reproduce reasonably well the experimental results (e.g. of the 
Cu-Ni alloys) (Fig. 4.11), where such curves for several concentrations may be 
fitted with ( computed for different values of k0f.

Figure 4.10 Spontaneous reduced magnetization (C/Co), and inverse of the reduced 
susceptibility versus reduced temperature T/Tc, for different values of kd'/EF in the Stoner model.
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Figure 4.11 Magnetization (£) in the Stoner model versus reduced temperature T/Tc for 
different values of the parameter kd'/EF, and experimental values of the spontaneous 
magnetization of the CuxNi-|_x alloys.

Contrary to what we had found in the case of localized magnetism (Weiss 
model), in the Stoner model there is a critical value of the parameter O', that is, 
there is a value of k&/EF below which there is no magnetic order (Fig. 4.12). In 
the localized case, Tc is proportional to Xm or J [Eq. (2.83)], so that for any value 
of J there exists ferromagnetic order. Another difference in the itinerant electron 
case is that even when magnetic order exists, £0 0e., ( at 0 K) may or may not 
reach its maximum value (= 1).

The critical values of kO'/EF may be computed from the integral equations 
that define n and M [Eqs. (4.13) and (4.14)]. When T 0 K, the Fermi-Dirac 
function J\E) [Eq. (4.4)] in Eq. (4.1 la) tends to 1 for E < EF, and the functions 
F[(kO'( + /z)/kT] and F[(—kO'^ + ii)/kT\ become j [(kO'C + //)/kT^1 and 
j[(—kO'C* + /i)/kT]3l\ respectively. The expressions for n and M are obtained 
from the Eqs. (4.36) and (4.37) and are written

_ ( n\ I
n~\E^]\E;) 3

MC + M3/2'
kT ) (4.38)

(-ke'c + ^\3/2l 1 
\ kT ) J
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Figure 4.12 Spontaneous magnetization (Co) at T = 0 K versus the parameter kO'/EF in the 
Stoner model.

( n \ (kT\3/2 2 J
3[

W( + /A3/2’ 

kT J
k-k0'C + fi\3/2' 

\ /
(4-39)M =

Dividing the first equation by n and the second equation by we obtain, by 
summing and subtracting

(1 + O=-^(£f + ^')3/2 (4.40a)
^F

V-0 = 4/2^ + ™'^ (4.40b)
^F

Taking to the power | and subtracting the second equation from the first, we have

(1+C)2/3_(1_C)2/3=^C (4.41)
^F

The value of k0'/EF below which no magnetic order can occur is given, 
rewriting Eq. (4.41) for small values of In this case

2
(l + <)2/3 = 1+-C (4.42)
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and Eq. (4.41) becomes

2 kOf 
3 Ef

(4-43)

Consequently, below kO'/EF = 2/3 there is no ferromagnetic order; this condi­
tion is equivalent to the usual Stoner criterion [Eq. (4.29)] (see Exercise 4.3).

The value of kOf/EF for which Co reaches its maximum value (= 1) may be 
calculated, making ( of the order of 1; in this case

(1 + C)2/3 - 22/3 (4.44)

and

(1 _^)2/3 ^0 (4-45)

Substituting into Eq. (4.41), we find that below a value of kff /EF given by

_ ,-1/3 (4.46)

there is no saturation, in other words, £ has, at T = 0 K, a value £0 < 1.
Figure 4.12 shows the variation of £0 versus kO1 /EF\ one can see the threshold 

value of kO'/Ef for magnetic order (0.667) and the value below which the 
magnetization at T = 0 K is not saturated (k0r/EF = 2-1/3 — 0.794).

4.4 COUPLED LOCALIZED ITINERANT SYSTEMS

The collective model of Stoner provides a simple description and reproduces 
several aspects of the behavior of metals, as, for example, the variation of the 
magnetization as a function of temperature in the metals of the d group, such as 
nickel. A model containing both localized magnetic moments and itinerant 
moments has sometimes been used to describe the same ferromagnetic metals. 
The question of the coexistence of localized and itinerant moments in these 
metals is a controversial point.

On the other hand, such a mixed model seems particularly appropriate for 
certain metallic systems; these are the intermetallic compounds containing rare 
earths and d transition metals. These compounds present properties that are 
characteristic of localized systems (e.g., Curie-Weiss-type dependence of the 
susceptibility), side by side with others associated with itinerant magnetism (e.g., 
Slater-Pauling-type dependence for the d magnetic moments). There are 
compounds that order magnetically, even when the rare earth present is 
nonmagnetic (e.g., RFe2, R^Fe^); the magnetism here results from the d—d 
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interaction, and is a band phenomenon. Other compounds order only if the 
transition metal is combined with a magnetic rare earth (e.g., RNi2); in these, 
the order arises from the interaction between localized moments through the 
conduction electrons. A third group shows mixed features, with both the rare 
earth and the d electrons contributing to Tc.

Characterizing the d—d interactions with the parameter kO' and the 
interaction between conduction electrons and local moments (angular 
momentum J) with the parameter J, we may group these systems into four 
classes, exemplified by rare-earth transition metal intermetallic compounds of 
the AB2 series:

1. kO' small, J J — 0; that is, LuNi2, Tc « 0 K
2. k0f large, J J = 0; that is, LuFe2, Tc « 600 K
3. kO’ small, J J 0; that is, GdNi2, Tc & 80 K
4. ktf large, J J 0; that is, GdFe2, Tc 800 K

The study of rare-earth 3d compounds has generated much interest due to 
their huge importance as materials for permanent magnets. In this application, 
the high magnetic ordering temperatures associated with the 3d elements are 
combined with the strong anisotropies characteristic of the rare earths (see 
Chapters 1 and 5).

To study these systems, we will consider a model in which there are two 
coupled sublattices, sublattice i (ion) and the sublattice e (electron). Since the 
superposition of the 4/ orbitals of the ions is negligible, these orbitals interact 
only with the conduction electrons: the conduction electrons, however, interact 
with the ions, and among themselves. The molecular fields that act on the ions 
and on the electrons are (e.g., lannarella et al. 1982):

!jb
(4.47a)

Be=B,+ — [J(g-V)JQ+ke\e] 
l-lB

(4.47b)

with Q = Me/{neHB) and Q = Mi/{gnBJni)
The Stoner equations [Eqs. (4.13) and (4.14)] are rewritten with Be in the place 

of50

3n (kT\3/ (E + p.BBe\ (E~nBBe\
T 1 4 \EfJ [ \ kT J \ kT J (4.48)

M = ^(«T
'kT\^\r(E + nBBe\ 
ef) [ \ kT 7 (4.49)F\~~k^)
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In the limit T —> 0, analogously to Eq. (4.41), we obtain

(1 + C)2/3 - (1 - C)2/3 = 2^-C + 2J(g - 1)
t^F \^f J

(4.50)

To obtain the magnetizations Ce(T) an<3 G(T)> we solve [Eqs. (4.48) and 
(4.49)] numerically. The resulting curves, of magnetization, and of the inverse of 
the susceptibility, are presented in Fig. 4.13 (for the narrowband limit).

The curves of electronic magnetization and susceptibility are similar to those 
obtained with the simple Stoner model. It can be seen (Fig. 4.13) that £e(T) is 
not zero, even in the case when k9'/EF = 0. The ionic magnetization 
always reaches its maximum value (= 1) at T — 0. For T Tc, the inverse of 
the susceptibility, for ions and electrons, follows a linear dependence on 
temperature.

In contradistinction with the behavior of the Stoner model, there is sponta­
neous magnetic order for any value of k0f, provided J is not zero.

The electronic magnetization at T = 0 depends on the value of kd'/Em, for 
different values of J. The magnetic behavior as a function of the parameters 
ktf /Ef and J may be well illustrated by equi- Tc and equi-£e curves (lannarella et 
al. 1982). If, in the Stoner model, we make the width of the band (£» tend to 
zero, we will find an almost perfect equivalence with the localized system. The 
model of two coupled systems becomes, in this case, practically equivalent to two 
interacting localized moments.

4.5 MAGNETIC PHASE TRANSITIONS: ARROTT PLOTS

The free energy of a sample with small magnetization, described within the 
molecular field approximation, can be expressed as a Landau expansion in 
powers of magnetization T) (Landau and Lifshitz 1968). The magnetic 
contribution to the free energy fm in a field H is written

A B
fm = -M\H, T)+-M\H, T) + • • • - M(H, T)H (4.51)

To obtain the equilibrium magnetization in the presence of H, we find the 
minimum of the free energy fm as a function of M. This gives, ignoring higher- 
order terms:

M\H, T) = -^ + H
.BJ M(H, T) (4-52)

This result shows that under these conditions the square of the magnetization 
depends linearly with the variable H/M. A graph of isothermal values of M1 
versus H/M is known as an Arrott plot (Fig. 4.14).
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Figure 4.13 Ionic magnetization Q(T), electronic magnetization (e(T), and inverse of the 
susceptibilities in the ion-electron coupled system (in the limit of narrow band), for different 
values of the pair [kdf, J(g - 1) J]. (a) for ktf = 0 and J(g - 1) J = 0.134 eV; and (b) ktf = 0.08 
eV and J(g - 1) J = 0.08 eV; (c) ktf = 0.123 eV and J(g - 1) J = 0.0125 eV; and (d) ktf = 0.124 
eV and J(g - 1) J = 0.001614 eV, for kTc = 0.062 eV and J = [Reprinted from L.lannarella, A. 
P. Guimaraes, and X. A. Silva, Phys. Stat. Sol. (b) 114, 259 (1982). Reprinted by permission of 
Wiley-VCH Verlag, Weinheim.]
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Figure 4.14 Plot of M2 versus H/M (Arrott plot) for the itinerant ferromagnet ZrZn2. H is the 
internal magnetizing field. [Reprinted from E. P. Wohlfarth, in Magnetism—Selected Topics, 
S. Foner, Ed., Gordon and Breach, New York, 1976, p. 74.]

In the case of very weak itinerant ferromagnets, the Stoner model [from 
Eqs. (4.23) and (4.39)] leads to (e.g., Wohlfarth 1976)

m2(h, r) = M2(o,o) + 2^"2(0’0)m(^7) (4.53)

which has the same form as Eq. (4.52). One can thus identify the terms A and B 
that appear in (4.51):

A = (4-54)

B =-----------------
2«%o^2(O,O)

(4.55)

From Eq. (4.54) one can see that the line in an Arrott plot representing the 
measurements made at T — Tc passes through the origin. This fact is used to 
determine Tc experimentally from such plots.
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A modified version of the Arrott plot has been used to study phase transitions 
in systems that cannot be described by the molecular field approximation (Seeger 
and Kronmuller 1989). It consists of a graph of versus (H , where (3 
and 7 are critical exponents.
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EXERCISES

4.1 Pauli Susceptibility (1). Show that if T is small compared to the Fermi 
temperature, the Pauli susceptibility is given by

r
o
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where n,n, and n are the density of states and their derivatives at the Fermi 
surface. Show that in this case, for free electrons this expression is reduced 
to

X(T’) « Xo
7T2 fkT\2' 

~12\EJ

4.2 Pauli Susceptibility (2). The spin susceptibility of an electron gas at 
T = 0 may be discussed in the following way: let

= pV(l +C); = 1^(1 - 0

be the moment up and moment down electron concentrations, respectively.

(a) Show that in a magnetic field B the total energy of the ‘moment up’ 
band in the model of the free-electron gas is

£, =£fl(l+O5/2-l„At5(l+()

where Eo = (^f)nEF. Find an analogous expression for Ey.

(b) Minimize Etotal = F, + E^ in relation to Q and solve for £ in the 
approximation £ < 1. Show that the magnetization is given by 
M = 3nyBB/2EF.

4.3 Stoner Criterion for Ferromagnetism. Show that the Stoner criterion 
given by Eq. (4.29) is equivalent to that of Eq. (4.43).

4.4 Ferromagnetism of Conduction Electrons. The effect of the exchange 
interaction among conduction electrons may be approximated, assuming 
that the electrons with parallel spins interact among themselves with energy 
— F, with V > 0, and electrons with antiparallel spin do not interact. Use 
the results of the exercise 4.2 and show that the energy of the moment up 
subband is given by

£t = £0(l + <)5/3 - |Kn2(l + C)2 -\nnB(\ + 0

(a) Find a similar expression for Ey.

(b) Minimize the total energy and show that the magnetization is

M= B
2Ef -1 Vn

that is, the interaction increases the susceptibility.
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(c) Show that with B = 0 the total energy is unstable to £ = 0 when 
V > AEF/3n. If this condition is satisfied, a ferromagnetic state 
(£ 0) will have a lower energy than the paramagnetic state. Since 
£ < 1, this is a sufficient condition for ferromagnetism, but it may not 
be necessary.

4.5 Density of States of a Free Electron Gas. Show that a gas of free electrons 
contained in a volume V has a density of states given by Eq. (4.1).



THE MAGNETIZATION 
CURVE

The magnetic characterization of materials is done primarily from the graph of 
their magnetization M as a function of the intensity of the external magnetic field 
H. This is their magnetization curve, or M-H curve. From the M-H (or B-H) 
plot, many important parameters of the magnetic material can be measured; 
some of them are defined in Section 5.5, and include the saturation magnetiza­
tion, coercivity, and retentivity.

The magnetic materials present a large diversity of shapes of magnetization 
curves; these reflect complex phenomena that take place in the materials, such as 
the motion of domain walls, the rotation of domains, and changes in the 
direction of magnetization. Before discussing some of these processes, we will 
examine the shapes of the magnetization curves of some idealized materials.

5.1 IDEAL TYPES OF MAGNETIC MATERIALS

We will consider four types of ideal materials that, under the influence of 
magnetic fields, approximate the behavior of a large range of real materials. It 
is instructive to discuss the shapes of the M-H curves for these materials. It is 
certainly more rewarding to start with these, rather than with the more complex 
real magnetic materials.

We may describe all known materials, in an approximate way, from four 
classes of ideal materials (Herrmann 1991): (1) the ideal nonmagnetic materials, 
(2) the ideal magnetically hard materials, (3) the ideal magnetically soft magnetic 
materials, and (4) the ideal diamagnet.

115
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Figure 5.1 Magnetization curve of a magnetized sample of an ideal hard magnetic material. 
[Reprinted from F. Herrmann, Am. J. Phys. 59, 448 (1991).]

In the ideal nonmagnetic materials, the application of an external field does 
not result in any magnetization. The magnetization is zero for any value of H, 
and the curve of magnetization versus field coincides with the axis of H. 
Paramagnetic and diamagnetic materials may be identified in some circum­
stances with these ideal nonmagnetic materials. For example, when considering 
the magnetization of a material containing a mixture of phases, we may take the 
magnetization of paramagnetic or diamagnetic impurities as zero; they are then 
identified with this ideal nonmagnetic material.

In the ideal hard magnetic material, the magnetization is not affected by the 
external field H; it remains constant for any value of H. This is the property that 
makes the hard magnetic materials useful for the manufacture of permanent 
magnets. The magnetization curve of a magnetized sample of such material is a 
horizontal line, parallel to the H axis (Fig. 5.1); this ideal behavior is inspired in 
the relatively flat magnetization curve of hard magnetic materials (see also 
Section 5.5). In the ideal hard magnetic material, in opposition to the soft 
magnetic material, the external field penetrates completely the sample: Hint « H 
(see Chapter 1).

In the soft magnetic material, the magnetization increases rapidly as the 
external magnetic field is increased. In the limit of an ideal soft magnetic 
material, the magnetization curve is a vertical straight line that coincides with 
the M axis (Fig. 5.2); the ideal soft magnetic material is a medium that can be 
magnetized with an arbitrarily small magnetic field intensity. If the geometry is 
such that the demagnetizing factor Nd / 0, the external magnetic field is 
completely shielded, so that the internal field H is zero. Therefore in these 
ideal materials the magnetic fields do not penetrate the samples; this effect is the
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M

Figure 5.2 Magnetization curve of an ideal soft magnetic material.

result of the arrangement of magnetic dipoles at the surface of the sample, in such 
a way that its interior is completely shielded from the influence of the external 
fields. For their ability to impede the penetration of external magnetic fields, the 
magnetically soft materials are very useful, among other things, as magnetic 
shields.

These ideal materials are the magnetic analogs of perfect electric conductors, 
which do not allow the penetration of electric lines of force in their interior 
(Fig. 5.3). The lines of force outside the ideal soft material are equivalent to those 
that would be observed in the presence of an opposite magnetic pole, located 
inside the material.

The ideal diamagnetic material has zero induction B for any value of applied 
external magnetic field H. Since B remains zero as H increases, |M| has to

Figure 5.3 (a) Magnetic north pole near the surface of an ideal soft magnetic material, and 
(b) positive charge near the surface of an electric conductor.
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Figure 5.4 M - H curve for an ideal diamagnet; the magnetization varies linearly with H, 
corresponding to a susceptibility % = -1.

increase at the same rate to compensate [from Eq. (1.5)], and the susceptibility 
X = M/H is equal to —1. Since B = /zH, in this ideal material the magnetic 
permeability /z has a value of zero. The magnetization curve for an ideal 
diamagnet is shown in Fig. 5.4. Superconductors behave like ideal diamagnets, 
for applied fields of magnitude smaller than the critical field Hc (or smaller than 
Hci in the case of type II superconductors). The lines of force of the field H (or B)

Figure 5.5 (a) North magnetic pole near a superconducting surface (ideal diamagnetic material); 
(b) same, showing the equivalent magnetic pole inside the material. [Reprinted from F. Herrmann, 
Am. J. Phys. 59, 448 (1991).]
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cannot penetrate this material. However, differently from what occurs in the 
magnetically soft material, the shielding mechanism involves the presence of 
electric currents at the surface, instead of magnetic poles. The lines of force of H 
are parallel to the surface (Fig. 5.5); the effect of the ideal diamagnetic material 
on the lines of force is equivalent to that of a magnetic pole of the same polarity, 
located inside the material.

5.2 CONTRIBUTIONS TO THE ENERGY IN MAGNETIC MATERIALS

Inside a magnetic material, the magnetic moments are subject to several 
interactions (Kittel 1949), such as (1) the magnetostatic energy, that is, the 
magnetic energy in the demagnetizing field; (2) the magnetic anisotropy; (3) the 
exchange interaction, responsible for the magnetic order; and (4) the magneto­
elastic interaction, relevant in the phenomenon of magnetostriction. We will now 
focus on these different terms for the energy inside the magnetic domains.

5.2.1 Magnetostatic Energy

We can consider a magnetic dipole as formed by two fictitious entities called 
magnetic poles, of magnetic strengths +p and -p, separated by a distance d; the 
pole strength p is measured in amperes meter (SI). Two such poles, +p(ri) and 
-p(r2), separated by a distance r = - r2|, apply on one another a force given
by Coulomb’s law

2

4tt r2
(5-1)

where /z0 is the vacuum permeability, whose value is /z0 = 4?r • 10 7H/m. The 
force on each pole is -dU/dr, where U is the potential due to the other pole:

4tt r (5-2)

The force that acts on a pole in an applied field H is F = p^pH. The magnetic 
dipole moment of the pair of poles p, separated by a distance r is m = pr.

We can calculate the work necessary to form a magnetic dipole by separating 
these two poles for a distance d\ this work is identical to the energy required to 
magnetize a bar of unit section:

rd rd rM
dw = / F(r)dr = pH dr = H dM

Jo Jo Jo
(5-3)

One can thus compute with this integral the work necessary to magnetize 
an originally unmagnetized sample, which is measured by the area between the
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Figure 5.6 Area that measures the work required to magnetize a sample.

curve and the M axis, in Fig. 5.6; this work is converted into potential
energy and heat.

If we vary the applied field in such a way as to produce a full magnetization 
loop (see Section 5.5), we return to the same point in the M-H diagram, and the 
variation in potential energy is zero. The area of the loop then represents the 
energy dissipated as heat—known as the hysteresis loss.

The magnetostatic energy is the energy of a magnetized material, in the 
absence of an applied magnetic field; in this case, the only magnetic field that 
acts is the demagnetizing field. The energy of the material in its demagnetizing 
field is also called self-energy. A sample of magnetic material that is taken to 
saturation by the application of a field Hext of increasing amplitude will, in 
general, keep a certain magnetization as it is removed from the field.

The graph of magnetization versus the internal field H (= Hext + Hj) will be 
as shown in Fig. 5.7. At the maximum external field, the curve will reach the 
point A, and the magnetization will reach the saturation value Ms. As the field is 
lowered to zero, the magnetization will evolve to an equilibrium value Me (point 
C); at this point, the only magnetic field on the sample will be the demagnetizing 
field Hd, an internal field along the negative H axis. This curve is called the 
demagnetization curve, and point C is the intersection of the straight line 
M = —H/Nd with the curve for M. For each value of M, the corresponding 
value of H given by this line is the demagnetizing field; if one adds this value of 
\Hd\ at each abscissa H of the curve, one recovers the curve of M — Hext.

The magnetostatic energy Ems per unit volume, at point C, may be computed 
from Eq. (5.3), as the work done against the demagnetizing field. Since in this
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Figure 5.7 Magnetization of a magnetized material versus internal field H; this is the 
demagnetization curve. Point C corresponds to the equilibrium magnetization of the sample 
under the action of the demagnetizing field Hd. The marked area measures the magnetostatic 
energy (divided by /z0).

case the energy is the self-energy, a factor of | appears:

r Ms /• Me
Ems 2^0 J Hd dM 2^0 J -^7 dM

rMe ..
= -lM0 yo Hd dM = ~Nd M2e (5.4)

where Ms is the saturation magnetization and Me is the equilibrium magnetiza­
tion, that is, the magnetization for zero external field. Ems is given by the shaded 
area in Fig. 5.7.

For a given geometry, and therefore a given Ndi a permanent magnet will 
always operate on the same line OC, called the load line. If, for example, the 
demagnetizing curve is obtained with the sample at a higher temperature, the 
magnetization will be smaller, but the working point (C') will still fall on the same 
line OC. The modulus of the slope of the load line in the B x H curve 
(= is called the permeance coefficient.

5.2.2 Magnetic Anisotropy

The shape of the curve of magnetization versus applied field H in ferromagnetic 
single crystals depends on the direction of application of H. This can be seen in 
Fig. 5.8 for crystals of iron and nickel. The origin of this effect lies in the fact that
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Figure 5.8 Dependence of the magnetization with the magnetic field H applied along different 
crystal directions, for single crystals of Fe and Ni. The easy directions of magnetization are (100) for 
Fe and (111) for Ni.

the magnetic moments inside the magnetic material do not point indifferently to 
any direction in relation to the crystalline axes. There exists, for each crystal, a 
preferred direction, known as the “direction of easy magnetization,” or the “easy 
direction.”1. For example, in metallic iron, the easy direction is [100] (and the

1 In many cases, as will be exemplified later on, the directions on a plane are equivalent, and instead of 
an easy direction, one has an easy plane.
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equivalent directions are [010] and [001]). Applying a magnetic field along these 
directions, one reaches the maximum magnetization (or saturation magnetiza­
tion) with lower values of H. The direction along which a multidomain sample is 
easier to magnetize is the same direction of magnetization of the individual 
undisturbed domains.

There are several contributions to the magnetic anisotropy; for instance, the 
magnetocrystalline anisotropy (or crystal anisotropy) is the main source of 
intrinsic anisotropy. The extrinsic contributions are related to the shape of the 
samples, their state of mechanical stress, and so on (see Table 5.III).

The magnetocrystalline anisotropy energy (or crystal anisotropy energy) 
arises mainly from the interaction of the electronic orbital angular momenta 
with the crystalline field, that is, with the electric field at the site of the magnetic 
ions.

The exchange interaction is isotropic, and therefore, cannot be responsible for 
this effect; the microscopic origin of crystal anisotropy lies in the interaction of 
the atomic orbital momentum with the charges of the lattice. The spin momen­
tum of the atoms, in its turn, is involved in this interaction through spin-orbit 
coupling.

The magnetic anisotropy energy EK per unit volume may be derived in the 
case of a single-domain perfect crystal. This energy is written as a function of the 
direction cosines eq, q2, and a3, defined in relation to the axes of the crystal. 
Since the energy is only a function of the angle with the easy axis (and indifferent 
to the direction along this axis), it must remain the same when we change the sign 
of these cosines, and therefore, odd powers of the cosines cannot appear in its 
expression. Also, the permutations among the cosines must leave the energy EK 
invariant.

The most general form that the energy may have in terms of the powers of the 
direction cosines qz for a cubic crystal is

EfQ ~ Kq + K\ (ce^ce| + &2CV3 + CI3CI1) + ^2(^1 ^2^3)^ H- ' *' (5.5)

Substituting into EK the direction cosines of the directions [100], [110], and [111], 
symmetry directions in the cubic system, we obtain the expression of the energy 
for these three directions:

£100 — ^0 (5.6a)

Ell0 = Kq + ^/4 (5.6b)

E1U =Kq +KJ3 + K2/Z1 (5.6c)

The anisotropy constants and K2 may then be derived from the areas 
of the magnetization curves obtained for each direction, since the anisotropy 
energy for each direction is given by the area between the curve and the M axis, as 
in Fig. 5.6. The K values vary with temperature, tending to zero at the transition 
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temperature Tc. The anisotropy constants are measured in units of joules per 
cubic meter (SI), or ergs per cubic centimeter (CGS); the SI value is obtained by 
multiplying the CGS value by 10-1. When K2 can be neglected, Kx defines the 
direction of easy magnetization—for K\ > 0, the easy direction is [100] (E1Oo < 
E110 < Em); for negative E1? the easy direction is [111] (Enl < Eno < E1Oo).

For uniaxial crystals the description is simplified; for hexagonal crystals, for 
example, the anisotropy energy is usually written in terms of the sine of the angle 
0 between the c axis and the direction of magnetization as

EK — Kq + K\ sin 0 -|- K2 sin 0 + • • •

In many cases, K\ > 0 and K2 > —Kx, and the anisotropy energy is a minimum 
for 0 — 0; the magnetization points along the c axis of the crystal. This occurs, for 
example, in cobalt metal, and in barium ferrite (BaFe12O19). In these cases the 
anisotropy is uniaxial, since EK does not depend on the angle with the directions 
of the basal plane, in the hexagonal crystal. In the simplest situation, | | K21,
and the anisotropy energy may be written (ignoring the constant term Eo):

Ek = Kx sin2 0 (5.8)

Some values of the anisotropy constant K\ are given in Table 5.1.
We may, for certain purposes, assume that the uniaxial magnetic anisotropy is 

due to the action of an equivalent field, Ha (anisotropy field), with direction 
equal to that of the easy magnetization axis. Its expression can be obtained 
computing the value of the magnetic field that produces on the magnetization the 
same torque of the anisotropy interaction, for small angles (sin 0^0). The 
torque r is MxB, and the energy is -MB; therefore, for small angles, 
dE — t d0. For uniaxial anisotropy, for example, the condition of equal torque 
is written, from Eq. (5.8), as a function of the saturation magnetization Ms:

^HaMs0 = 2KX0 (5-9)

from what results, for the expression of the anisotropy field,

„ =1^> 
a ^Ms

(5.10)

Table 5.1 Anisotropy constants K1 of some cubic metals and intermetallic compounds at 
room temperature

Crystal Fe Ni ErFe2 DyFe2 TbFe2 HoFe2

KjCIO3 j m"3) 45 -5 -330 2100 -7600 580
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One may show that this gives also the magnitude of the external magnetic field 
that produces saturation when applied in a direction perpendicular to the axis of 
easy magnetization.

The shape of a sample affects its magnetic anisotropy energy. As we have seen 
in Section 1.2, the demagnetizing field depends on the shape of the sample, and 
on the direction of the applied field. The demagnetizing field is smaller along the 
longer dimension of the sample, and larger in the opposite case. For this reason, 
if one wants to induce the appearance of an internal magnetic field inside a given 
sample, a less intense field is required if applied along a larger dimension. In 
other words, the direction of larger dimension is an easy axis of magnetization, in 
the cases where this easy axis is determined by shape anisotropy.

To obtain the expression for the shape anisotropy energy, we use the 
magnetostatic energy, -(/z0/2)M • Hd [from Eq. (5.4)]. The shape anisotropy 
energy for an ellipsoid of major axis c and minor axes a = b can be computed by 
projecting the components of the magnetization M along the three axes. The sum 
of these contributions is

Ek = ^NCM2+^(Na-NC)M2 sin2 0 (5.11)

where 0 is the angle between the c axis and the direction of magnetization, and the 
N terms are the corresponding demagnetizing factors (Fig. 5.9).

In the case of a spherical sample, a = b = Na — NC9 and the shape 
anisotropy energy is

Ek =^NM2 = ^M2 (5.12)
2 6

where we have used N = | for the sphere. Thus, in the case of the sphere, the 
shape anisotropy energy is not zero, but it is isotropic; that is, it does not depend 
on 0.

The expression for a bidimensional magnetic sample, applicable to a magnetic 
thin film, can be obtained from Eq. (5.11), in the limit of a flat oblate ellipsoid. If

Figure 5.9 Sample of ellipsoidal shape with magnetization along a direction forming an angle 0 
with the major axis.
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the length of the c axis tends to zero, then Nc —> 1, Na 0, and we obtain 
(ignoring a term that does not contain 0)

E^-= - y A/2 sin2 0 (5.13)

where 0 is now the angle formed between M and the normal to the plane of the 
sample (Fig. 5.10).

Equation (5.13) shows that, in terms of shape anisotropy, any direction on the 
plane is an easy direction—we may then speak of an easy plane; this equation 
can be seen as describing a form of uniaxial anisotropy [Eq. (5.8)], with uniaxial 
anisotropy constant Ku = -(/z0/2)A/2.

In thin films, the breaking of local symmetry associated with the presence of 
the interface gives origin to another contribution, the magnetic surface aniso­
tropy (Neel 1954), which amounts to a term cr = Ks cos2 0 added to the surface 
energy. This corresponds to an anisotropy energy per volume

Es = ^Ks cos2 0 (5.14)

where Ks is called out of plane surface anisotropy constant, and d is the thickness 
of the film (Gradman 1993); Ks is in the range 0.1 —1.0 x 10~3 J m 2.

5.2.3 Exchange Interaction

The interaction between the atomic spins responsible for the establishment of

Figure 5.10 Planar sample with magnetization along a direction forming an angle 6 with the 
normal.
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magnetic order is the exchange interaction, an interaction of electrical origin (see 
Chapter 3). It may be written, for a pair of neighbor atoms, as a function of their 
spin operators Sz and S7 [Eq. (3.25)]

Hexch = -2JSZ-S7- (5.15)

where J is the exchange parameter. We can therefore write in approximate form, 
for the exchange energy of a pair of atoms of spin S in a ferromagnetic material, 
as a function of the angle 0 between the spins:

£exch = -C0S 0 (5.16)

Expanding cos 0:

cos0=l-^ + ^-... (5.17)

Taking into account the terms up to second order and substituting into the 
expression of Eexch, we obtain, neglecting the term that does not depend on 0:

Ch = <W (5.18)

For a one-dimensional chain of N + 1 neighbor atoms, the exchange energy is

N
£exch = ^2E  ̂ t5'19)

i

where the sum is made on the N pairs of nearest neighbors.

5.2.4 Magnetoelastic Energy and Magnetostriction

A solid under tension has an elastic energy that is expressed as a function of the 
strains eZ7; this notation represents a strain arising from a force applied in the 
direction along the axis z, to a surface of normal in the direction parallel to the j 
axis. In the case of a magnetic material, the elastic energy has an additional term 
that results from the interaction between the magnetization and the strains; this 
is the magnetoelastic energy. Its expression may be derived through the 
computation of the anisotropy energy in the presence of the stresses (Kittel 
1949). The magnetoelastic energy is the contribution to the anisotropy energy 
that arises in a solid under stress.

The stress cr at a point P is defined as the force divided by the area AF/ AJ in 
the limit as A J 0. A solid body under the effect of a stress cr undergoes a strain 
e. The strain e is dimensionless, and is given by the relative change in length (61/I). 
Within certain limits, this deformation is linear, and the strain is proportional to 
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the stress a (an empirical result known as Hooke’s law):

a
E

(5.20)

where E is Young’s modulus.
A solid sample under tension along a given direction also reduces its 

transverse dimension, or width vv0, and the Poisson ratio v (dimensionless) is 
defined from the variation bw of this dimension:

<5/
— = -Z7-
w0 I

(5.21)

For most materials the Poisson ratio has a value between 0.1 and 0.3.
Hooke’s law can be rewritten in terms of the components ey of the strain and 

ay of the stress (Landau and Lifshitz 1959):

(i,j) = x,y,z (i/j)

(5.22)

(5.23)
E

The elastic energy per unit volume is given in the cubic system by (Landau and 
Lifshitz 1959)

Eel 2^11 । 2+ eyy + elz) + ^44(exv + + ^zx)

3”C|2 T ^xx^zz 3~ ^xx^yy (5.24)

where the Cy are the elastic moduli.
The magnetoelastic energy may be obtained expanding in Taylor series the 

expression of the anisotropy energy [Eq. (5.5)], as a function of the strains ty:

ek - EK{y) + ("a^) ey
ij \oeij / 0

(5.25)

The anisotropy energy is then a sum of a term for zero strain—the anisotropy 
energy proper—and additional terms that involve the strains ey. These terms of 
the expansion constitute the magnetoelastic energy Eme:

Ek — EK(0) + ^me (5.26)

Expanding the series, and using the expression of EK for an unstrained crystal 
[Eq. (5.5)], we obtain the following equation for the magnetoelastic energy in a 
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cubic crystal (Kittel 1949):

^ME — ^1(^1 exx + &2eyy + a3ezz) + ^2(ala2exy + ^2^36^z + a3alezx) (f-27)

The B factors are known as magnetoelastic coupling constants', the a terms are the 
direction cosines.

The equilibrium configurations of a magnetized cubic crystalline solid are 
given by the tensor of strains 6y that minimizes the total energy, which is 
expressed by [using the second term of Eqs. (5.5), and Eqs. (5.24) and (5.27)]:

E — Ek + Eei + Eme =

2 2 2 2 2 2K(ceiCE2 T O2O3 + Q3Q1)
12 2 2 12 2 2T 2^11 (fxx T Cyy 4” €zz) 4” 2^44(fxj T CyZ 4~ Czx)

T C[2^yy^zz T CXX6ZZ 4- Cxx6yy^

4- (o^6xx 4" O^C-yy 4" O^CZZ)

+ ^2^ala2exy + a2^36^z + a3a\ezx) (5.28)

The solutions are of the form cy — ty(K, By^B^, cmn).
A sample of magnetic material changes its dimensions as it is magnetized; this 

phenomenon is called magnetostriction. In more general terms, magnetostriction 
is the occurrence of variations of the mechanical deformation of a magnetic 
sample due to changes in the degree of magnetization, or in the direction of 
magnetization. Materials have positive magnetostriction when they exhibit a 
linear expansion as they are magnetized (e.g., the alloy Permalloy); and negative 
magnetostriction, in the opposite situation (e.g., nickel metal). Its microscopic 
origin involves the interaction of the orbital atomic moment with the electric 
charges in the crystalline lattice (the crystal field).

Magnetostriction is defined quantitatively as the relative linear deformation

A = ~ (5.29)
zo

where 81 = I — /0 is the variation in the linear dimension I of the sample.
This effect is very small; A is normally of the order of 10~5 to 10-6. The 

magnetostriction A has the same dimension as the strains e caused by a 
mechanical tension. Thus, a crystal of a ferromagnetic material that is perfectly 
cubic above the ordering temperature Tc will present a small distortion when 
cooled below this temperature.

There exists also the inverse magnetostrictive effect, that is, the effect of the 
change in the magnetization through the action of an applied stress. Magneto­
striction is also observed when a magnetic field is applied to a magnetized sample 
(called in this case forced magnetostriction).
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Table 5.II Saturation magnetostriction of some 
polycrystalline materials, at room temperature

Material AJxlO6)

Ni -33
Co -62
Fe -9
Ni60Fe40 (Permalloy) +25
Fe3O4 +40
TbFe2 + 1753

The magnetostriction constants usually quoted are the saturation magneto­
striction constants Xs, specifically, the values of <5///0 for samples taken from the 
unmagnetized state to magnetic saturation. Some values of Av for polycrystalline 
materials at room temperature are shown in Table 5.II. The magnetostriction 
constants fall with increasing temperature, tending to zero at the Curie 
temperature.

Let us assume a sample of cubic crystal structure that changes from a 
demagnetized state to a state of magnetic saturation. Its saturation magneto­
striction Xs, along a direction defined by the direction cosines (3^ (32 and (33 
relative to the crystal axes, is (e.g., Kittel 1949):

A5(ce,/3) = | A1Oo(cq/3f + a2(32 + a303 ~ |)

+3A111 (cq 6*2/31+ 6*26*3/32/33 + a3a1^30\) (5.30)

where 6*1? 6*2, and a3 are the direction cosines of the direction of magnetization; 
Aioo and Am are the saturation magnetostrictions along the directions [100] 
and [111], and are related to the magnetoelastic coupling constants (B\ and B2\ 
more fundamental quantities that appear in Eq. (5.27), and to the elastic 
moduli c^.

Calling 9 the angle between the direction [P1P2P3] along which the magneto­
striction is being measured, and the magnetic field (parallel to [6*x 6*26*3]), we have

cos 9 = 6*i/3i T 6*2^2 + 6*3/33 (5.31)

If we make the approximation of considering the magnetostriction isotropic, 
we will then have Aioo = Am = As. Substituting into Eq. (5.30), the magneto­
striction becomes

A(0) = iA5(cos20-|) (5.32)

which can be written, substituting cos2 9 — 1 - sin2 9 and neglecting the constant
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term:

A(0) = - |A5 sin2 0 (5.33)

This expression for the magnetostriction does not depend on the crystal 
directions, only on the angle between the magnetization and the direction along 
which the magnetostriction is measured.

The relation between magnetostriction and magnetoelastic energy can be seen 
for a solid of length /0 submitted to a tensile stress cr, in a direction forming an 
angle 0 with the magnetization; its dimension is altered by dl(0}. The increase in 
energy (per volume) is the work -a dl(0)/lQ done by the stress a (noting that a is 
equivalent to a negative pressure):

dE = -cr^) = -a dX(ff) (5.34)

For a solid magnetized to saturation, the total energy is the work done as the 
solid is deformed by magnetostriction; this is the magnetoelastic energy. There­
fore, in the case of isotropic magnetostriction in a cubic crystal submitted to a 
stress cr, the magnetoelastic energy is written [using Eqs. (5.33) and (5.34)]:

^me = 2 \crsin2 0 (5.35)

Comparing thus with Eq. (5.8), we see that this expression has the form of an 
anisotropy energy. We can conclude that the magnetostriction, through the 
magnetoelastic energy, is equivalent to an uniaxial anisotropy, with anisotropy 
constant

Ku = lXsa (5.36)

The different kinds of contributions to magnetic anisotropy are shown in 
Table 5.III.

For the magnetostriction measured in the same direction as the applied field, 
— /3h and substituting into Eq. (5.30), we obtain

\(ce) — l^lOO^l + a2 + Q3 ~ |) + ^^111(^1^2 + &2a3 + ^3^1) (5.37)

where the cez- are the direction cosines of this direction.
Using the expansion

(cej + q?2 T ^3) — (<^1 T ^2 + CE3) + 2(cejCE2 T ce^ce2 T ce2ce2) = 1 (5.38) 

we simplify and obtain

\(a) = ^100 + 3(^111 — ^100) (al + CE2CE3 + CE2aq) (5.39)



132 THE MAGNETIZATION CURVE

Table 5-III Axial anisotropy constants and anisotropy mechanisms

Anisotropy Mechanism Uniaxial Constant

Crystalline Crystal field K„ = Kj
Shape Magnetostatic K„ = Ks = /z0/2(^-^)M2
Stress Magnetoelastic Km K, 2
Neel Surface K„ = Ks

Source: Based on B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, Reading, MA, 
1972, p. 272.

which gives the saturation magnetostriction of a cubic crystal measured along 
the same direction as the applied magnetic field, of direction cosines at.

In systems with weak crystalline anisotropy, the anisotropy term derived from 
the magnetoelastic energy may dominate. The definition of the easy direction of 
magnetization will then be determined by the stress a. The local effect of the 
application of a stress to a demagnetized sample will be the growth of domains in 
the preferred directions, both parallel and antiparallel (for Av > 0). The magne­
tization will remain zero, but there will be motion of domain walls. If the 
crystalline anisotropy is very low, the walls remaining after the application of the 
tension may be removed with the application of a negligible magnetic field.

Depending on the shape, a magnetized sample may undergo a deformation 
due to the tendency to minimize the magnetoelastic energy (shape effect); this 
effect is different from the action of magnetostriction (see Cullity 1972).

Measurements of anisotropy energies or magnetostriction in polycrystalline 
samples yield average values of these quantities. For example, the saturation 
magnetostriction of a cubic random polycrystal can be obtained by averaging 
Eq. (5.30) and is given by

\ = pMoo + 5^111 (5.40)

Polycrystals in which the individual crystallites show preferred orientation are 
said to present texture, and their magnetic properties cannot be described by 
simple expressions such as Eq. (5.40).

5.3 MAGNETIC DOMAINS

Samples of ferromagnetic materials seldom have a nonzero total magnetic 
moment; that is, they do not behave as magnetized objects. This is the case, 
for example, for an ordinary iron object at room temperature. Why are all 
samples of ferromagnetic materials not magnets? The explanation is that the 
ferromagnetic samples are divided into small regions, called domains, each one 
with its magnetization pointing along a different direction, in such a way that the 
resulting magnetic moment (and the average magnetization) remains nearly 
zero. Inside each domain the magnetization has its saturation value.
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Figure 5.11 Division of a single magnetic domain, minimizing the magnetostatic energy.
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Domains are created because their existence reduces the magnetostatic 
energy. This can be illustrated in the case of a sample of rectangular cross 
section (Fig. 5.11); as the original single domain splits, the magnetic energy of the 
system goes down. This energy is reduced even more with the formation of 
closure domains (not shown), with magnetization perpendicular to that of the 
other domains.

Between two adjacent magnetic domains with magnetization directions 
differing by an angle 6, there is an intermediate region of finite width, known 
as a domain wall. If a 180° domain wall has a thickness of N atoms, each one with 
spin S, the average angle between neighbor spins is tt/7V, and the energy per pair 
of neighbors is EePch = [from Eq. (5.18)]. A line of atoms with N + 1
neighbors perpendicular to the domain wall has an energy

ST
E - 7VEpair - —. .  (5 4D^exch — 7V/1exch —

The condition for the energy Eexch to be minimum is that N grows indefinitely; 
however, if N increases, the anisotropy energy increases, since the number of 
spins not aligned to the direction of easy magnetization also increases. If the 
separation between the atoms is a, a unit length of the domain wall crosses \/a 
lines of atoms; a unit area of wall is crossed by \/a‘ lines. The exchange energy 
per unit area is then

2 J7)2
^exch (5.42)

The anisotropy energy per unit volume of a uniaxial crystal is EK = K sin2 0 
[Eq. (5.8)]. Since a wall of unit area has a volume Na, the anisotropy energy per
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unit area is

eK = /f sin2 ONa « KNa (5.43)

The condition that minimizes the total energy per unit area e = £exch + eK 
(exchange plus anisotropy) is given by

de _ _
dN N2a2

(5-44)

and the wall that satisfies this condition has a number of atoms given by

7TS /j
3/2 V K (5.45)

Therefore the thickness of this wall is

8 = Na =
~S /J 

V K (5.46)

The domain wall thickness is therefore directly proportional to and 
inversely proportional to \/K.

The subdivision into domains does not proceed indefinitely, again for energy 

Figure 5.12 Magnetic moments inside a 180° domain wall (Bloch wall).
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considerations. The formation of interfaces (walls) between the domains leads to 
an increase in energy due to magnetic anisotropy, and to the exchange inter­
action. This occurs because the anisotropy energy is minimum for a direction 
parallel to the original direction of magnetization of the domains, while the 
exchange energy is minimum for a parallel alignment of the moments. The width 
of the domain wall is defined by the competition between the anisotropy energy 
and the exchange energy; the former is reduced for narrow walls and the latter, 
for thick walls. As example of domain wall widths, we have 50 nm for the 90° 
domain walls in iron, and 15 nm for the 180° walls in cobalt.

The domain walls are also called Bloch walls, although this denomination is 
used more specifically for a type of wall in which the magnetization turns outside 
the plane of the magnetizations of the neighbor domains (Fig. 5.12). The wall 
whose moments turn in the same plane of the domain moments is called a Neel 
wall.

Our discussion of the formation of magnetic domains is applicable to single 
crystalline magnetic samples. For polycrystals, the individual crystals (or grains) 
normally present a multidomain structure, if their sizes are larger than a critical 
dimension, given roughly by Eq. (5.46) (see Coey 1996).

5.4 REVERSIBLE AND IRREVERSIBLE EFFECTS IN THE 
MAGNETIZATION

A small external magnetic field applied to a single domain along an arbitrary 
direction produces a torque that tends to turn the magnetic moments, causing 
them to deviate from the direction of easy magnetization. This effect produces a 
reversible increase of the component of the magnetization in the direction of the 
applied field. The angle of rotation, and consequently the increase in the 
magnetization (or the susceptibility), depends on the competition between the 
value of the anisotropy field and the intensity of the external field. For a field 
applied according to an angle 6q with the direction of uniaxial anisotropy, and 
forming an angle 6 with the magnetization, the energy will be

E = -Ku cos2 (6 - 0O) - n0MsH cosO (5.47)

where Ku is the parameter of uniaxial anisotropy.
For larger magnetic fields applied to a single-domain particle, irreversible 

processes occur, arising from the irreversible rotation of the magnetization. For 
example, the magnetization of the single domain in Fig 5.13 rotates from its 
original direction through the action of the field H. As the intensity of H 
increases, M eventually flips to a direction opposite to the positive c axis, shown 
in the figure. If, after that, H is reduced, the magnetization does not return to its 
original direction, but instead aligns with —c; this change in magnetization is 
therefore irreversible.
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Figure 5.13 Single domain rotating its direction of magnetization under an applied magnetic field, 
in an irreversible process.

In real multidomain crystals, the energy of a domain wall is dependent on its 
position, due to the interaction with impurities and defects. This dependence 
may be, for example, as shown in Fig. 5.14. Small wall displacements around the 
position x — sq, shown in the figure, are reversible, and this makes the corre­
sponding variations of the magnetization also reversible.

The interaction of a domain wall with defects or impurities hinders its motion; 
a domain wall that is immobilized by this interaction is said to be pinned. If the 
edge of a domain wall is pinned, but its surface is allowed to move, another form 
of reversible magnetization results from this motion under the external field. 
With an increase in the H field, this wall deforms as a membrane under pressure. 
With this deformation, or bowing, its area, and consequently, its energy, also 
increase.

In the displacement As of a 180° domain wall, the magnetization of the

Figure 5.14 Domain wall energy as a function of wall position in a real crystal.
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sample is increased by AMS — 2MS As. The increase in magnetic energy, Eq. 
(5.47), is:

AE = -2fiQMsHAscose (5.48)

and the force per unit area, or pressure, is given, in the limit as As —> 0 by:

dE
— — —2p^MsH cos 6 (5.49)

The most important irreversible magnetization mechanism in magnetically 
ordered solids is related to the irreversible displacement of domain walls. This 
may be illustrated by Fig. 5.14, which shows the action of a magnetic field 
pushing the wall, for example, from the position s0 to . If at S! the derivative of 
the energy reaches a local maximum, an increase in field H will make the wall 
jump to s2. The wall stops at s2 because at this point the equivalent force (or 
pressure) exerted by H is again balanced by the restoring force, which is 
proportional to the derivative of the energy at the point s2 [Eq. (5.49)]. If, 
from this moment onward, the field H is canceled, the wall will move to the 
nearest minimum, and consequently the magnetization will not return to the 
original value corresponding to the point s0-

The jumps of the domain walls (e.g., from to s2 in Fig. 5.14) can be detected 
through the discrete changes in magnetic flux through a coil wound around the 
sample. The discontinuous change in magnetization with constantly increasing 
H is known as the Barkhausen effect, and the steps in the induced electromotive 
force (e.m.f.) are called Barkhausen noise.

5.5 THE MAGNETIZATION PROCESS

The magnetic characterization of a sample can be made by plotting its magne­
tization in a graph, against the applied field H, generally in the form of a (1) 
virgin curve and (2) magnetization curve or hysteresis cycle. The virgin curve is 
the curve of magnetization versus H for an originally unmagnetized sample. The 
hysteresis cycle or hysteresis loop is the full magnetization curve, traced from 
H — to H = -#max and back (Fig. 5.15).

The variation of the magnetization of a material as a function of the intensity 
of the applied field H is a complex phenomenon that reflects the action of several 
microscopic mechanisms. A sample of magnetic material is formed, in general, 
by an ensemble of magnetic domains that may, under the influence of the applied 
field, change volume, or turn their magnetization directions away from the easy 
directions. The shape of the magnetization curve is affected by the presence of 
local impurities, defects, and grain boundaries; these are relevant for the 
appearance of domains with opposite magnetization (nucleation), for the 
pinning of domain walls, and so on.
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Figure 5.15 Initial (or virgin) magnetization curve (OABC) and magnetization curve, or hysteresis 
loop (CDEFGC). The curve BD'E' is followed if H is decreased from a point below saturation 
(corresponding to point C).

Starting from an unmagnetized sample, the magnetization curve, or M-H 
loop, has the general shape shown in Fig. 5.15, where we may distinguish three 
different regions. In the OA region, the magnetization increases slowly with the 
application of the external magnetic field; in the region AB this occurs more 
rapidly, and in the region BC the magnetization tends to a value of saturation. If 
the applied field does not grow until the magnetization reaches its maximum 
value, but instead, starts to decrease after reaching an intermediate value, the 
magnetization traces a curve that is, in general, different from the curve OC. 
Only for small fields, and consequently small magnetizations, this effect is not 
observed; for example, the curve OA may be traced in two senses: with increasing 
or decreasing field. If the magnetic field increases until the magnetization reaches 
the point B (Fig. 5.16), and is later reduced, the magnetization falls, for example, 
until B7; if H starts to increase again from this point, the magnetization follows 
the closed curve limited by B and B>. Curves of this type are called minor loops 
(Fig. 5.16).

From the virgin B x H curve (Fig. 5.17), we can evaluate the initial magnetic 
permeability pi (the derivative of the curve at the origin) and the maximum 
permeability pm (tangent of the largest angle formed by the straight line that is 
tangent to the curve and passes through the origin).

The complete magnetization curve is traced when the field H increases up to 
Ffmax, decreases to — Hmax, and returns to the maximum value. Figure 5.15 shows liluA Z IIICIA Z CZ
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Figure 5.16 Initial magnetization curve (OABC), showing minor loops (e.g., BB'B).

Figure 5.17 Initial curve of magnetic induction B, showing the angles that define the maximum
permeability (= tan 0m) and the initial permeability /i, (= tan 0,).
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a typical magnetization curve with a value of Hmax sufficient to reach the 
saturation of the magnetization. Several aspects may be stressed in relation to 
this curve: (1) as mentioned above, the decreasing field traces a curve that is 
different from the initial (or virgin) curve OC; (2) when the field reaches the value 
H — 0, the magnetization is not zero, but it has a finite value (OD, called the 
retentivity), and (3) the field for which the magnetization reaches zero is a 
negative field, whose modulus (OE) is called the coercive field (or coercivity). 
When the M-H loop is traced without reaching the saturation magnetization, 
the magnetization for zero field is called remanent magnetization (or remanence) 
(OD' in Fig. 5.15), and the field for M = 0 is called the coercive force (OE1 in 
Fig. 5.15).

We can also describe the magnetic behavior of a sample through the graph of its 
magnetic induction B versus field H (B-H curve). This curve is equivalent, but not 
identical, to the M-H curve, because B and M are connected through Eq. (1.5):

B = //H = yUo(H -f M) — Bext T //q]VI (5.50)

(we have assumed the internal field H = Hext); /z0 is the vacuum permeability and 
[i is the magnetic permeability of the medium. The polarization J is defined as 
/z0M. The B-H curve differs from the M-H curve, since the former does not 
present saturation; as H increases to the point of saturating M, the induction B 
will still continue to increase linearly with H [from Eq. (5.50)]. It is usual to 
distinguish the coercivity obtained from the curve of induction (BHC) from that 
obtained from the magnetization curve, or from the polarization curve (jHc).

Note that the internal field H is in general a sum of the applied field Hrw and 
the demagnetizing field H^, the latter depending on the shape of the sample, and 
direction of the applied field. To obtain a M-H loop that is independent of these 
factors, we should subtract from /7cxt the quantity \Hd\, thus obtaining a graph 
of M versus H (the internal field).

The physical quantities whose values are obtained from the virgin magnetiza­
tion curve, and from the hysteresis curve, are listed in Table 5.IV.

Table 5.1V Magnetic parameters derived from the hysteresis curve (M-H) and from the 
virgin magnetization curve (see Figs 5.15 and 5.17)

Quantity Symbol Representation
Unit 
(SI)

Unit 
(CGS)

Saturation magnetization Ms OC Am’1 G
Coercivity, or coercive field Hc OE Am’1 Oe
Coercive force (without saturation) Hc OE' Am’1 Oe
Retentivity Mr OD Am’1 G
Remanence (without saturation) Mr OD' Am’1 G
Maximum permeability (virgin curve) Um tan (0m) — —
Initial permeability (virgin curve) Hi tan(0z) - —
Energy product J m3 GOe
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As mentioned in Section 1.5, a magnetic material adequate for the construc­
tion of permanent magnets must have elevated values of the coercive field and of 
the retentivity (or of the remanence); this reflects the fact that (1) a large 
(negative) field is required to take the magnetically saturated assembly of 
domains to the condition of zero net magnetization, and that (2) a high degree 
of alignment of the domains remains when the external field is removed. These 
favorable properties may be measured by a quantity known as the energy 
product, (BH)m.dX, [see Eq. (1.17)], which is equal to the area of the largest 
rectangle than can be inscribed in the second quadrant of the B-H curve. 
Therefore, to optimize (5H)max, a magnetic material must have, in principle, the 
maximum retentivity and the maximum coercivity.

The magnetic properties of some materials at room temperature, for different 
degrees of magnetic hardness, are presented in Tables 5.V (soft magnetic 
materials), 5.VI (intermediate magnetic materials), and 5.VII (hard magnetic 
materials); see Fig. 5.18 (see also Table 1 .II and Fig. 1.15).

The fact that the magnetization follows two distinct curves, one for increasing 
fields and another for decreasing fields, is called hysteresis; for this reason the 
magnetization curve is also called hysteresis curve, or hysteresis loop. We can, under 
special conditions, obtain a magnetization curve without hysteresis (anhy stere tic). 
For this, it is necessary to apply, for each value of H, a superposed oscillating 
magnetic field of decreasing intensity, with an initial amplitude sufficiently large to 
saturate the sample. The anhysteretic magnetization curve is traced by recording 
the magnetization when this amplitude reaches zero, versus H.

The work necessary to change the magnetization of an element of volume of a 
magnetic material, from M\ to M2, under an applied field H, is given by

8W = ^l H 8M (5.51)

The integral between — 0 and M2 = Ms is a measure of the area between 
the magnetization axis and the curve in Fig. 5.6. As we go through a full 
hysteresis cycle, beginning with H = Hmax and going back to this value, the 
variation in potential energy must be zero, and therefore, the energy correspond­
ing to the area of the hysteresis curve is dissipated as heat. This energy converted 
into heat is the hysteresis loss.

The variation of magnetization as a function of magnetic field H is the result of 
several different processes operating in the sample. For small values of the field 
(curve OA, Fig. 5.15), the magnetization increases mostly through reversible motion 
of the walls, in such a way that the domains whose magnetization have projections 
along the same direction of H increase their size at the expense of the others 
(changing from Fig. 5.19a to Fig. 5.19/)). In this region the magnetization also 
increases due to moment rotation inside the domains, against the anisotropy field.

For intermediate values of the field H, the magnetization increases via the 
irreversible displacement of the domain walls (Fig. 5.19c). In this process, the 
saturation magnetization is reached; its value corresponds to the value of
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Main Elements besides Fe

Saturation 
Polarization 
J - (T)

Saturation 
Magnetostriction 

(in 10“6)

Coercivity 
(DC) 

(Am ')

Relative 
Permeability 

(xl0“3)

Electrical 
Resistivity 

(10“4Q-cm)

72-83 Ni + Mo, Cu, Cr 0.75-0.95

Commercial Alloys

^1 0.3-4

(H = 4m Acm-1)"

30-250 0.55-0.6
35-40 Ni 1.30-1.40 22-25 20-40 3-9 0.55-0.6

6.5 Si 1.8

Other Special Alloys

^1 8-20 «10 0.8
16 Al 0.8-0.9 15 2-5 4-8 1.45

80 Ni, Mo 0.5-0.85

Powder Core Materials

Depends 10-100

(B = 40 mT)

30-250 > IO10

50 Ni 1.2 on alloy 200 30-150 > IO10

Fe78Si9B13 1.55

Amorphous Alloys

27 3

(H = 4mAm~1)z’

8 1.37
Co74Fe2Mn4Si1]B9 1.0 < 0.2 1.0 2 1.15

Fe73 5Cuj Nb3Si13 5B9 1.25

Nanocrystalline Alloys

+ 2 1 100 1.35

Source: Reprinted from R. Boll, in Materials Science and Technology, K. H. J. Bushow, Ed., Vol. 3B, Part II, p. 439.
Copyright © 1994, Wiley-VCH Verlag, Weinheim. Reprinted by permission of John Wiley & Sons, Inc.
"For alloys with round loops.
b Alloys with round or fat loops, / = 50 Hz.
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Table 5.VI Magnetic properties of some intermediate magnetic materials (or semihard 
magnetic materials)3

7-Fe2O3 Fe2O3-Fe3O4 Co-7-Fe2O3 CrO2 Ba Ferrite

MT) 0.11 0.15 0.15 0.15 0.12
Hc (kA m-1) 26 37 52 45 64

Source: Reprinted from J. Evetts, Ed., Concise Encyclopedia of Magnetic and Superconducting 
Materials, Pergamon, London, 1992, p. 223, with permission from Elsevier Science.
a All examples are from magnetic recording materials.

Table 5.VII Magnetic properties of some commercially available permanent magnet 
materials

Material
Tc
CO

(^)max
(kJ m-3)

Br
T

jHc
(kA m ')

bHc 
(kA m ')

Ferroxdure (SrFe12O19) 450 28 0.39 275 265
Alnico 4 850 72 1.04 — 124
SmCo5 720 130-180 0.8-0.91 1100-1500 600-670
Sm(CoFeCuZr)7 800 200-240 0.95-1.15 600-1300 600-900
NdFeB (sintered magnet) 310 200-350 1.0-1.3 750-1500 600-850

Source: Reprinted from K. H. J. Bushow, in Materials Science and Technology, K. H. J. Bushow, Ed., 
Vol. 3B, Part II, p. 475. Copyright ©1994, Wiley-VCH Verlag, Weinheim. Reprinted by permission 
of John Wiley & Sons, Inc.
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Figure 5.18 Graph of ranges of coercivity Hc and of anisotropy constant for different types of 
magnetic materials. [Reprinted from H. Kronmuller, J. Mag. Mag. Mat. 140-144, 26 (1995), with 
permission from Elsevier North-Holland, NY.]
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Figure 5.19 Schematic representation of the effect of an applied magnetic field on the domain 
structure of a ferromagnetic material; (a) before application of the field; (b) with the applied field, the 
domains with magnetization parallel to H increase at the expense of the other domains; (c) the 
technical saturation of the sample, which becomes practically one single domain (d) for higher 
fields, the magnetization rotates inside the domain. In c and d the dotted squares represent 
microscopic regions of the sample (not the domains).

the magnetization inside the domains at the temperature of the experiment; this 
is called technical saturation. Finally, for high values of H, the increase in M 
arises from (reversible) rotations of the magnetization of the domains, which 
tend to align with H (Fig. 5. \9d). The magnetization grows still further, through 
the increase in the degree of alignment of the magnetic moments inside the 
domains; this is called forced magnetization.

The shapes of the M-H curves are generally dependent on the direction of the 
applied field H relative to the crystal axes, due to the effect of crystalline 
anisotropy. This may be illustrated in an idealized sample with two magnetic 
domains, uniaxial anisotropy, no irreversible effects in the magnetization and 
high wall mobility. We also neglect shape anisotropy. If one applies a magnetic 
field parallel to the anisotropy axis (Fig. 5.20#) the domain wall will move and 
the magnetization will reach saturation for a negligible field. The M-H curve 
will be as a shown in Fig. 5.20/?.
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(a) (6)

Figure 5.20 (a) Sample of magnetic material with two domains, under the action a field H parallel 
to the direction of easy magnetization; (b) shape of M-H curve; note the saturation for low fields.

If, on the other hand, the applied magnetic field H points along a 
direction perpendicular to the anisotropy axis, the wall will not move, and the 
magnetization will gradually turn inside the domains, as this field overcomes 
the effect of the anisotropy field Ha. The M-H curve will be a sloping 
straight line, reaching saturation for the field H = Ha (Figs. 5.21# and 5.2lb).

It is instructive to follow the direction of magnetization of the domains 
inside the material, at different points in the hysteresis curve. In the first place, it 
should be noted that different domain configurations may correspond to the 
same value of magnetization. The configurations are shown in Fig. 5.22. In 
particular, for a null magnetization there is more than one possible configuration 
of the domains; the ideal demagnetized state is usually taken as that in which the

Figure 5.21 (a) Sample of magnetic material with two domains, under the action of a field H 
perpendicular to the direction of easy magnetization; (b) Shape of M-H curve; note the gradual 
increase of the magnetization, reaching saturation for H = Ha.
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Figure 5.23 Magnetization curve for small values of magnetic field, known as the Rayleigh curve.
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volume of the sample is equally divided among the possible types of magnetic 
domains.

The magnetization curves obtained with very low values of H (of the order of 
100 A m-1 or 1 Oe) have a special shape, called the Rayleigh curve (Fig. 5.23). The 
magnetic permeability for small field intensity is a linear function of H and can 
be written in the form

p, = 4- vH (5.52)

where is the initial permeability, which is also given by the tangent of the angle 
of the straight line tangent at the origin of the curve of B versus H, and v is the 
Rayleigh coefficient; these two quantities are characteristic of each material. The 
magnetization curve as a function of H for low values of H [from (5.50)] is a 
parabola, of the form

M = aH + bH2 (5.53)

with a = (ni — /z0)/Mo and b — vj/z0. The area limited by the hysteresis curve in 
this case is proportional to 773.

As explained in the previous section, permanent magnet materials are hard 
magnetic materials, with high retentivity Mr (or high remanence) and high

M

(«)
Figure 5.24 Hysteresis loops for an ideal permanent magnet material: (a) curve of M-H, 
showing a square loop; (b) curve B - showing the square whose area is a measure of the 
ideal energy product (see text).
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coercivity Hc. The single characteristic that best describes the suitability of a 
given material for the use in permanent magnets is the maximum energy product

An ideal permanent magnet material has a perfectly square M-H loop, which 
means that its magnetization remains at the saturation level for any value of H, 
from the maximum applied field to the coercive field (Hc) (Fig. 5.24a). Therefore, 
the magnetization at the remanence point (Mr) has the same value of the 
saturation magnetization Ms. Drawing the hysteresis loop as B versus 
(Fig. 5.24/?), one can use the same units in both axes (in tesla). For this ideal 
magnet material, the graph in the second quadrant is a straight line connecting 
the point (0, Br) to the point (/z0A 0), since the only change in B in this range of 
magnetic field arises from the variation in H itself.

The maximum energy product (BH)m.dX is the area of the square in the 
hysteresis loop, plotted as B x (Fig 5.24/?). From this curve, noting that 
PobHc — Br and Br = it is easy to estimate the value of the energy product 
in this ideal case:

2 2
(^£‘' = /z0^=~ (5.54)

This is therefore the upper theoretical limit for this quantity; for example, the 
measured energy product for a sample of NdFeB with induction at remanence 
Br = 1.35 T is 320 kJ m-3, corresponding to approximately 90% of the value of 
363 kJ m-3 predicted from the above expression.

Permanent magnet materials are frequently multiphase, or heterogeneous, 
consisting of different components that have different magnetic properties, such 
as magnetic hardness. Also, the domain structure is complicated by the presence 
of both multidomain and single-domain grains. Therefore, the analyses of the 
processes responsible for the shape of the hysteresis loops are correspondingly 
more complex (see Givord 1996).

5.6 DYNAMIC EFFECTS IN THE MAGNETIZATION PROCESS

There is a class of magnetic phenomena associated with the time dependence of 
the response to external applied magnetic fields. In the discussion of the 
magnetization process, we have not yet considered the form of dependence of 
H(t), assuming implicitly that at each moment the system is in equilibrium. In 
this section we will briefly treat these phenomena, limiting our scope to time 
effects observed in ferromagnetic materials. This restriction excludes some 
important time effects observed, for example, in spin glasses.

These dynamic effects can be divided into aftereffects and resonances. The 
application of a magnetic field H of sufficient intensity to take a sample 
to magnetic saturation does not induce the instantaneous appearance of a 
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magnetization Ms, for two main reasons: (1) for very short times, eddy currents 
appear in the sample that oppose the growth of the induction B (or of M); 
(2) because the several microscopic processes underlying the magnetization 
process take finite characteristic times to be completed. The delay in the 
growth of the magnetization due to this last cause is called magnetic aftereffect, 
and may vary from a fraction of a second to many hours. In these processes we 
will ignore time dependences associated with nonreversible causes, due to the 
action of the magnetic fields, such as structural changes, or aging of the material. 
In the case of Fe-C alloys, for example, the aftereffects were attributed to the 
diffusion of carbon atoms that occupy interstitial sites, producing deformations 
that change the energy of the domain walls and can lead to their displacement. A 
thermal fluctuation aftereffect arises from the thermal fluctuation of the mag­
netization direction in small single-domain particles (or in pinned domain walls); 
this is a strongly temperature-dependent process, the rate of change falling with 
the temperature. This effect usually leads to a linear variation of the sample 
magnetization with the logarithm of the time, and this property is known as 
magnetic viscosity; it is expressed quantitatively as (see Givord 1996):

e dM
t/(ln t)

where M is the magnetization and t is the time.
One of these time effects is the disaccommodation, which consists in the

Figure 5.25 The phenomenon of disaccommodation—the magnetic permeability decreases with 
time, after the application of an oscillating magnetic field of decreasing amplitude.
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variation of the magnetic susceptibility (or of the permeability) of a material, 
after the application of a magnetic field; in this case it is the magnetic response, 
not the magnetization, that changes. It can be observed after the sample is 
demagnetized through the action of an oscillating field of decreasing intensity 
(Fig. 5.25). In ferrites this effect was attributed to changes in the magnetic 
properties brought about by the migration of vacancies. In FeSi alloys this effect 
arises from a linear ordering of atoms of the constituent elements.

Eddy currents appear each time a conducting sample is subjected to a time 
varying magnetic field H(t). The variation of the magnetic flux </) = BA (A is the 
area) creates an electromotive force e that produces currents in the material being 
magnetized (Faraday law):

_ d(BA)
dt dt

The currents generate a magnetic field that opposes the rate of variation 
d{BA)/dt of the flux (Lenz’s law); they have the effect, therefore, of hindering 
the increase of the magnetization at the same rate of change as the external field 
H(/). The eddy currents are proportional to the square of the frequency, and, of 
course, inversely proportional to the electrical resistivity of the material. These 
currents are more amplified yet in the domain walls. They are an important 
source of energy loss inside magnetic materials, an effect that is particularly 
relevant in power transformers.

The most important losses in ferromagnetic materials, however, are hysteresis 
losses (Section 5.5); losses by microscopic eddy currents and by other mechan­
isms associated with irreversible processes contribute to these losses. At high 
frequencies, on the other hand, domain wall motion is reduced, and the losses by 
microscopic eddy currents dominate. The presence of hysteresis, of eddy 
currents, and other mechanisms leads to the appearance, in an oscillating 
magnetic field, of an imaginary term in the magnetic permeability and in the 
magnetic susceptibility.

Under an oscillating magnetic field of angular frequency cj, given by

F = (5.57)

a retarded flux density B arises, with phase difference 6:

B = (5.58)

and the magnetic permeability is given by

B Boe^ B() _i6
A' H Hoe
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The permeability /z can be written in complex form

/z = [jl — ip!' (5.60)

where the normal permeability (in phase with H) is given by the real part of p:

p =—%os<5 (5.61)
H

and the out-of-phase part (the imaginary part), which is related to the dissipative 
processes, is given by

D
/ = -£sinZ> (5.62)

H

The loss factor is given by the ratio

The magnetization process due to the increase in volume of the domains 
cannot be instantaneous, since the walls move in a magnetic medium with a finite 
velocity. Observations made in different materials record velocities between 1 
and 104 cms-1. Although there is no displacement of mass in the motion of a 
domain wall, there is inertia against this motion, which results from the torques 
applied by the angular momenta associated with the atomic magnetic moments.

The variation in the energy of a domain wall of area A, under the influence of a 
field H that produces a displacement x, is

E = -2^AMsHx (5.64)

and the force per unit area is

F = -(!}^r = 2*>MsH (5.65)
\ 7T. J ClX

The equation of motion of the wall can now be written

d1 x dx
+ /3— + ax = 2p$MsH (5.66)

vr L (A L

The effective mass of the wall is m = ptfjj2rfA, where cr is the energy per unit 
area, 7 is the gyromagnetic ratio of the spins, and A! is the exchange stiffness, a 
coefficient proportional to the exchange energy (A' = JS1 fa, where a is the 
interatomic spacing).
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Let us assume magnetizations pointing along the axes x and — x in two 
adjacent domains separated by a 180° wall, with the normal to the domain wall in 
the z direction (Fig. 5.26). A field H = Hi will produce a torque on the moments 
localized in the wall, that will push them out of the planes of H and M, that is, 
upwards, as shown in Fig. 5.26. The z component of the magnetization in the 
wall will create a demagnetizing field:

Hd = -NdMz (5.67)

and its action on the moments will be perpendicular to z, and will cause the 
moments to turn in the plane xy. It is this effect that leads to the displacement of 
the wall; the final result is the volume increase of the domains with magnetization 
parallel to H, and a reduction of the volume of the antiparallel domains.

Several resonance phenomena are observed in solids submitted to oscillating 
electromagnetic fields; in general, their observation requires the simultaneous

Figure 5.26 Spin structure inside a domain wall, shown in two configurations: in the stationary 
state, and moving under an applied magnetic field. The plane of the domain wall is perpendicular to 
the z axis.
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application of an external static magnetic field. The atomic magnetic moments, 
the magnetic moments of the conduction electrons, and the magnetic moments 
of the nuclei can absorb energy from an oscillating field. These phenomena are 
usually described in terms of classical equations of motion of the magnetization, 
as the Bloch equations, the Landau-Lifshitz equations, or the Gilbert equation 
[see, e.g., Morrish (1965)]. These equations of motion are discussed in Sections 
7.2, 7.3, and 8.4.

Among the resonances that may be observed, one includes (1) cyclotron 
resonance, (2) electron paramagnetic or spin resonance (EPR or ESR), (3) ferro­
magnetic resonance (FMR) and antiferromagnetic resonance (AFMR), (4) spin 
wave resonance, and (5) nuclear magnetic resonance (NMR). This last phenom­
enon will be discussed in more detail in Chapters 7 and 8; a brief introduction to 
FMR will be presented in Section 8.4.

Cyclotron resonance (or Azbel’-Kaner resonance) is observed in metals and 
semiconductors, under the action of microwaves; in nonmagnetic materials it 
requires the application of an external magnetic field. It results from the 
interaction of the electric field of the microwaves with the charge of the electrons, 
keeping them in circular orbits; therefore, it is not in fact a magnetic resonance. 
The resonance condition is the same as the operating regime of the cyclotrons, 
given by

eB
u = — (5.68)

m

where B is the magnetic induction and m is the effective mass of the electrons; this 
frequency is twice the expression of the Larmor frequency [Eq. (2.10)].

In electron paramagnetic resonance, transitions are observed between the 
energy states of the unpaired electrons in the atoms or molecules, in the presence 
of an external magnetic field. For a magnetic induction ranging in tenths of tesla 
(or in the range of kilogauss), the resonance frequencies are in the region of 
gigahertz. A special type of EPR is observed in diamagnetic metals, due to 
conduction electrons: the conduction electron spin resonance (CESR). It is 
characterized by very broad lines, due to the fast relaxation rates of the 
conduction electrons (see Chapter 8).

In ordered magnetic systems, the atomic spins precess in phase, under the 
influence of an applied magnetic field. With the incidence of micro waves, we may 
obtain, according to the case, ferromagnetic resonance (FMR), or antiferro­
magnetic resonance (AFMR) (see Section 8.4). These resonances are usually 
observed in the same way as is EPR, although in the case of FMR the atomic 
magnetic moments are also under the influence of the demagnetizing fields. The 
resonance condition for ferromagnetic resonance where the ions feel an aniso­
tropy field Ba, is

CJ = y(B0 + Ba) (5.69)

where 7 is the gyromagnetic ratio of the atomic moments and Bo is the applied 
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magnetic field (Section 8.4). As in other types of resonance where the magnetic 
moments are electronic moments (as in EPR), for applied fields in the range of 
tenths of tesla (or kilogauss), the resonance frequencies are usually in the 
gigahertz range.

Finally, the spin wave resonance is a special type of FMR, which may be 
observed in thin samples of magnetically ordered materials. These samples, 
under a magnetic field applied along the normal to the plane of the film, present 
an amplitude of precession of the atomic moments that varies along the same 
normal. For some spin wave wavelengths, the turning magnetization is max­
imum, and there is resonance. The resonance condition is defined by

hu = - (1OM) + DK2 (5.70)

where

K —yi/r/L (L is the smallest dimension of the sample)
n = an integer
D = the spin wave stiffness constant (see Section 3.5)
g — the g factor
M — magnetization.

The observation of the different resonances succinctly described above 
presupposes the possibility of penetration of the electromagnetic waves into 
the solids. In the case of metallic solids, this penetration is limited because of the 
skin effect; the intensity of the electromagnetic field inside the conducting 
samples falls exponentially, decreasing to 1 /e of the value on the surface for a 
penetration depth s, given by

(5-71)

where

p = the electric conductivity
cj = the angular frequency of the electromagnetic wave
p = the magnetic permeability at the applied frequency cj.

A case of large practical importance is the penetration of the fields at the 
ac frequency of the electricity network (60 or 50 Hz) into electric conductors 
and transformer cores. For a copper conductor, at this frequency, for example, 
s is approximately 1 cm; for an iron core, s = 1 mm. The skin effect is also 
relevant in the phenomenon of giant magnetoimpedance, which consists in 
the large variation of impedance of a sample as a function of applied magnetic 
field.

At higher frequencies, the penetration is a function of the permeability ^(cj).



GENERAL READING 155

For a frequency around 100 MHz, the penetration depth in a metal is smaller 
than 10 p,m.
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EXERCISES

5.1 . Anisotropy Energy. For a crystal with cubic symmetry, show that the 
fourth order term eq + «2 + does not appear in the expression of the 
anisotropy energy, although it satisfies the symmetry requirements.

5.2 Magnetoelastic Coupling. In a cubic crystal, the density of elastic energy 
in terms of the components of the tensor is:

Uel = |Q1 + ^yy + Gz) + |C44(e^ + CyZ + Czx)

^12^yy^zz "h ^xx^zz "b ^xx^yy)

and the dominant term in the anisotropy energy is

UK — T 02^3 T ^3^1)

The magnetoelastic coupling may be formally taken into account with the 
introduction of the term

Ua ~ ^l(alexx + a2eyy + Q3C~) + B'Aa\a2exy + Q2Q3C'z + q3q1Cx) 
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where B} and B2 are the magnetoelastic coupling constants. Show that the 
total energy is minimum when

exx — r3 r3
Hi H2

with similar expressions for the other components of ezy.

5.3 Equilibrium Configuration of a Bloch Wall. Let Lexch(<^, <?/) and UK((/>) 
be the exchange and anisotropy energies, respectively, at a point x 
along a Bloch wall. = <^(x) is the angle that the magnetization at the 
point x makes with the anisotropy field (same direction of the magnetiza­
tion in the domains), and f is its first derivative in relation to x. If the 
extreme values of are 0 and <^0, the total energy of the wall may be 
written as

j — \fdK + ^exch(^, (f>y\dx

The equilibrium condition of the wall can be obtained from the variational 
principle:

8 J = 0

(a) Compute 8J for the case in which t7exch = /z(^)^'2, where Tz(^) is an 
arbitrary function of <p. Substitute

(/)' 6(f) — — (d) 6 cf) — (f'8 (f)
dx

and show that

8J = dx

(b) Recalling that 8 J) must be zero in the extremes of the variation, 
integrate the last term of the preceding expression and show that

rdo d n dh
/ 2hff)(fi) 8(f)dx = —2 / (f —8(f) dx

Jo dx Jo d<p
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(c) Substitute this result into 6J and, from the condition 6J = 0, obtain a 
differential equation connecting these quantities.

(d) Use (j) = d(j)/dx as integrating factor and show that

Thus, the equilibrium configuration is that in which the energies of 
exchange and anisotropy are equal at every point of the wall.



6
HYPERFINE INTERACTIONS

6.1 INTRODUCTION

The electric charges present in the nucleus interact with the electrons that 
surround it; in an analogous way, the electric currents (or the magnetic 
moments) associated with the electrons and the nuclei also interact. The 
magnetic and electrostatic interaction between nuclei and electrons may be 
written in a general way as a sum of products

h = £c7V(/)xr(/) (6.i)
/

where CN(l) and Ce(/) are nuclear and electronic operators corresponding to the 
multipolar electric terms [of parity p — (— l)z] or magnetic terms [of parity 
p — (-1)Z+1], where I is an integer.

The main contributions to the interaction associated with the following 
nuclear moments are: (1) electric part—nuclear electric monopole moment 
(which is simply the nuclear charge) and nuclear electric quadrupole moment 
and (2) magnetic part—nuclear magnetic dipole moment. In some cases the 
magnetic octupole interaction can also be detected, but usually it can be 
neglected.

The interaction of the electric monopole moment of the nucleus with the 
electric field due to the electrons is the Coulomb interaction, and does not 
concern us here.

The other interactions between nuclei and electrons are called hyperfine 

159
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interactions. In magnetic materials, the main hyperfine interaction is the inter­
action of magnetic origin; the electrostatic interaction is usually smaller.

Experimentally it is observed that the hyperfine interactions are much weaker 
than the exchange interactions or the interactions of the ionic moment with the 
crystal field; the latter, in turn, are much weaker than the spin-orbit interactions 
(Wls) (in the rare earths). That is, illustrating the case of the rare earths,

1~LlS > ^exch + Wcf » Whf (6.2)

Typical values of these interaction energies for the rare earth ions are 
ELS/k ~ 104 K, Eexch//< ~ 103 K, Ea/k ~ 102 K, and Ehf/£ ~ 10“4 K.

The atomic nuclei are characterized by the atomic number Z and by the mass 
number A : Z is the number of protons, and A the number of nucleons (protons 
+ neutrons) present. The angular momenta of the nucleons couple in such way 
as to produce zero total angular momentum I in the cases when both Z and 
(A — Z) are even. In every other case, 1^0, and it is either integer (a multiple of 
7z) or half-integer (multiple of S/2). The nuclei having nonzero angular 
momentum have an associated magnetic dipole moment given by

M = gikN^ (6-3)

where gj is the nuclear g-factor and nN is the nuclear magneton, given by (mp = 
proton mass):

_ eh _ gLB 
~ 2mp ~ 1836

where fiB is the Bohr magneton. The nuclear magnetic moment is also written 
fi— 7/1I, as a function of the gyromagnetic ratio 7.

Since p,N C and the g factors (gz) of the nucleus are of the order of 1, 
therefore comparable to the electronic g factors, it follows that the nuclear 
magnetic moments are much smaller than the ionic moments. For this reason, 
the nuclear magnetism of matter produces more subtle effects than the electronic 
(or ionic) magnetism. In general, the magnetic interaction energy of the nuclei 
(jjqB) is much smaller than kT, for usual values of B. To find effects comparable 
to those of the electronic magnetization, we need to reach temperatures three 
orders of magnitude lower.

Every nucleus with 1^0 has a magnetic dipolar moment. The nuclei that 
have I > | also possess an electric quadrupole moment Q, since their charge 
distribution lacks spherical symmetry.

6.2 ELECTROSTATIC INTERACTIONS

The nuclei located in a solid interact with the electric charges of the electrons 
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bound to the same atom, of electrons of neighbor atoms, and of conduction 
electrons (the latter, in the case of metals and semiconductors).

The interaction energy of a distribution of charges p(r) limited in space and 
submitted to a potential V(r) is given by

W = / p(y)V(y)dv (6-5)

where the integration is made over the volume occupied by the charges.
In our case we will take K(r) due to the electrons; p(r) in this case is the 

distribution of nuclear charge, and the integral is taken over the nuclear volume. 
The potential K(r) may be expanded in a Taylor series around the origin:

r(r) = r(o) + dV
Mo

d2v ' 
lXjdXj dxj (6-6)

where the sums are made over the components 1,2,3 (i.e., x, y, z). Alternative 
approaches use an expansion in spherical harmonics (e.g., Abragam 1961), or in 
tesseral harmonics (Arif et al. 1975).

Summing and subtracting the term

. d2v ' 
ijdxt dxj Q

2—
6/ dxj (6-7)

0

where Sy is the Kronecker delta, we obtain

m m o+-6 £ r »+-6 £ £ is.v,
2g '

r lldx, dxj

(6-8)

thus, substituting in Eq. (6.5):

PF — r(0) y p(r) A, + Eg J x,p(r)* + r2p(r)dv+

p(x)(3xiXj - r^dvA---- (6.9)

The first term of W is the electrostatic energy of the nucleus taken as a point 
charge (Coulomb term). In the second term, the integral is the electric dipolar 
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term of the nucleus; this is zero, since the center of mass and the center of charge 
of the nucleus coincide. This may be proved by starting from the fact that the 
nuclei have well-defined parity [i.e., ^(r) = ±^(—r), therefore |^(r)|2 = 
|^(—r)|2]. The third term only gives a displacement in the energy; we will 
come back to it shortly.

Introducing the notation Vy for the second derivative of the potential, and 
using the fact that this derivative is equal to the first derivative of the electric field 
components (with negative sign), we have

K _ d2V _ dEj 
l' dx^Xj dxj

and we speak of a gradient of the electric field, in analogy with the gradient VA, 
where A is a scalar. The integral of the fourth term in Eq. (6.9) is a component of 
the electric quadrupole moment tensor of the nucleus, Qy

Qij = y P\r)(3x,Xj - r^ydv (6.11)

The corresponding term in the expression of the energy therefore remains:

i j 1

that is, it contains the product of the electric field gradient by the electric 
quadrupolar moment of the nucleus. The electric field gradient is a tensor with 
components dEj/dx^.

To obtain the expression of the electric quadrupole interaction in quantum 
mechanics, we initially have to substitute the charge density p(r) by the operator 
Pop(r)

Pop(r) = <?526(r-r,) (6.13)
k

where the sum extends over the Z protons, of coordinates xik, at the positions rk. 
The quadrupole moment tensor operator becomes

Q°f = eE<j^X,XJ ~ ~ rk)dv (6.14)

k

and the hamiltonian of the quadrupole interaction results:

wn£E< (6.16)
i j
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This hamiltonian may be written in simple form, as a function of the operators 
of the angular momentum of the nucleus, using the Wigner-Eckart theorem, 
which states that the matrix elements of any vector operator in the space of 
eigenstates of I2 and Iz are proportional to the matrix elements of I. This gives, 
for the matrix elements of the operator Qy (Slichter 1990, Chapter 10):

(ZmC|Qf\Im'Q = C(Im+ //,) - <5,/\Im') (6.17)

where C is a constant and £ represents the other quantum numbers besides I and m. 
The quadrupolar hamiltonian therefore remains

we = 6Z(2Z — 1) 52 Vv 2 (Vj + W 6ul2 (6.18)

where Q is a number called the electric quadrupole moment, defined as

ee = (ZZC|e^(3x^-r^)|ZZC) (6.19)
k

Taking the axes x, y, and z coincident with the principal axes of the electric 
field gradient (EFG) tensor Vy, the components of Ny with i j are zero, and 
(6.18) becomes

2
= 4Z(2Z — 1) " /2 + 77(72 “ /2)1 (6’20)

where we have used Laplace’s equation (V2 V — 0). We have introduced eq = Vzz 
and the asymmetry parameter of the electric field gradient rj = (Vxx - Vyy)/ Vzz. 
The quantity eq is measured in volts per square meter (SI). The axes are chosen in 
such way that the components of the EFG tensor obey

|rzz|>|^|>|Kj (6.21)

The quantity r] varies between 0 and 1, and measures how much the EFG 
tensor deviates from axial symmetry.

In solids there are contributions to the EFG from the atom where the nucleus is 
located and from distant atoms (see Section 6.6); the EFG vanishes at the nuclei of 
pure S states in cubic symmetry. However, even for free atoms there is a certain 
amount of intermediate coupling that leads to a mixed ground state. In Gd3+, the 
ground state becomes a mixture of 8S7/2 and 6P7/2 (Abragam and Bleaney 1970).

For I = the eigenvalues of Hq are given by

e2aO . f 1 A1/2
Eq = 4Z(2Z—7) [3m ~~ 1(1 + 1)] V + 377 ) (6'22)
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In the case of a gradient with axial symmetry, 7/ = 0, and the hamiltonian 
(6.20) takes the form

2
(623)

The third integral in the classical expression of W [Eq. (6.9)] involves the 
laplacian of V (V2 V = d2 V/dx2). From Poisson’s equation, the laplacian is 
related to the charge present at the point r (the electronic charge, in this case):

V2P = - — (6.24)
e0

where pe is the electronic charge density and c0 is the vacuum permittivity 
[c0 = l/(/z0c2)]; the third integral, in the nuclear volume, is zero for the majority 
of the electrons. In the case of 5 electrons (and electrons) that have nonzero 
density in the region of the nucleus, the third term of the expansion of the energy 
[Eq. (6.9)] is not zero. It becomes, using Eq. (6.24) and the fact that the integral of 
r2p(r) is equal to Ze(r2}

W = -±-peZe(f} = —*—Ze2|vp(0)|2<r2) (6.25)
6c0 6c0

where (r2) is the nuclear mean quadratic radius, and we take into account that 
the nuclear charge is Ze. We have taken the density pe equal to the electronic 
density at the origin:

Pe = —e|^(0)|2 (6.26)

This term in the energy expansion gives rise to the isomer shift, in Mdssbauer 
spectroscopy. In the Mdssbauer effect a gamma ray is emitted without recoil by a 
nucleus in the excited state (at the source) and absorbed resonantly by another 
nucleus, in the absorber. Since, in principle, the nuclear mean quadratic radii in 
the ground state and in the excited state are different, and also, the values of 
| (0) |2 are in general different in the matrix of the source and in the absorber, the 
change in W can be measured. The energy displacement (the isomer shift) is 
proportional to the difference in mean square radius in the ground state (sub­
script 1) and excited state (subscript 2), and to the difference in electronic density, 
at the nucleus, between source (subscript s) and absorber (subscript a)\

A£ = J-Ze2(|^(0)|2 - |^(0)|2)(< r2 >2 - < r2 >0 (6.27)
O60

Instead of expressing the isomer shift in terms of the mean square radius, one 
often uses the nuclear radius R, related through R2 = | (r2).
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The electric field gradients that act on the nuclei in solids arise from the ionic 
charges from the electrons of the parent atom and also from the conduction 
electrons, in metals and semiconductors.

For a free ion of total angular momentum J, it can be shown that the 
interaction between the quadrupolar electric moment of the nucleus and the 
electric field gradient due to the electrons is (Bleaney 1967)

3(J • I)2 + 3/2(J • I) - J(J + 1)Z(Z + 1)
2.7(2 J - 1)7(2/ - 1)

(6.28)

where

B = -e2qQ < r~3 >< J || a || J > J(2J - 1) (6.29)

with eq the electric field gradient (crV/dz2) and Q the electric quadrupole 
moment of the nucleus; (J || a || J) is a number tabulated for each ion [for the 
rare earths, see Elliott and Stevens (1953)].

The electric quadrupole hyperfine interaction in magnetic materials is typi­
cally one order of magnitude smaller than the magnetic dipolar hyperfine 
interaction.

6.3 MAGNETIC DIPOLAR INTERACTIONS

The dominant term in the expansion of magnetic interactions of electrons and 
nuclei, given by the general expression (6.1), is the interaction with the nuclear 
magnetic dipole moment. This term arises from the effect of the spin and orbital 
magnetic moments of the electrons, acting on the dipolar magnetic moments of 
the nuclei. The magnetic dipolar hyperfine interaction may be written as an 
interaction of the nuclear magnetic dipolar moment with a magnetic field due to 
the electrons—the hyperfine field:

Whf —-/!/• Bhf (6.30)

This can be shown from the general expression of the interaction between an 
electronic current density and the nuclear magnetism. We may also show the 
different contributions to the hyperfine field; these contributions are due to the 
orbital momentum of the electrons, the distribution of the spins of the electrons 
outside the nucleus, and the spin density of the s electrons in the region of the 
nucleus.

We will initially study the vector potential at r associated with an arbitrary 
distribution of currents, of density J at point r (Fig. 6.1). The value of B at each



166 HYPERFINE INTERACTIONS

Figure 6.1 The current density J(r') at the point r', in a limited space region, giving rise to a vector 
potential at a point P, of coordinate r.

point of space P can be obtained from the vector potential A(r):
(6.31)

where the potential A(r) at the point P, of position r, due to a current density J at 
the point r, is given by the general expression

J(r') . , 
-------dv (6.32)

where /z0 is the free space permeability. The integration is performed on a volume 
contained in a region of finite radius R.

We will study the form of A(r) for an arbitrary distribution of currents. For 
this purpose, we will expand the denominator of A(r) in powers of r'. This is 
useful for the case of a distribution of currents of small dimensions, compared to 
|r|. The expansion gives

1 1 r r1
~~i + T7T r >• P (6.33)

The /'th component of A(r) becomes

(6.34)

Because J(rz) is spatially limited and has zero divergence, it follows for the first 
integral of this equation (Jackson 1975, Section V.6):

I J^r'^dv—Q 
v

(6.35)
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Therefore, the term corresponding to the electric monopole in the expansion 
of the electrostatic interaction (the Coulomb term) is canceled in the magnetic 
case. The integral of the second term becomes

f rf[ x'jJitf^dv — —| .Xy f {AJj — x’jJ^dv =
J K j JV j Jv 

(r' x y)kdv — (6.36)

where Eijk is the Levi-Civita symbol, equal to zero for repeated indices, and +1 
for circular permutations of i, j and k, and -1 otherwise.

Here we have used (Jackson 1975)

y (x-Jj + x'jJ^dv = 0 (6.37)

The magnetic moment associated with a current density J(r') is defined in a 
general way as

m = | y (r' x J(r'))(A/ (6.38)

integrated over the region of space (volume) where the currents are 
circumscribed.

The second term in the expansion of A(r) can then be expressed in terms of the 
magnetic moment m, using Eq. (6.38):

A(r)=^^ (6.39)
v 7 4tt |r|3 V 7

which is the expression of the vector potential at a point r, due to a magnetic 
dipole at the origin.

The magnetic field B associated with the vector potential A(r) is

B(r) "zBrrs [3(r ■m)r-r2m] (6.40)
4tt r

which is the magnetic field of a dipole m. [Conclusion'. The non-zero term in the 
expansion up to first order in r' of the field produced by an arbitrary current 
density J(r') is the field B(r) due to a magnetic dipole. The magnetic field far from 
an arbitrary distribution of currents is identical to the field of a dipole.]

We may compute the contributions to the hyperfine field that originate from 
the magnetic dipolar moment of the electrons. The magnetic dipolar moment of 



168 HYPERFINE INTERACTIONS

the electron in the atom has a contribution of the spin angular momentum and 
another of the orbital momentum. We will initially study the spin term.

6.3.1 Contribution of the Electronic Spin to the Magnetic
Hyperfine Field

The conduction electron states in a crystal may be described by Bloch functions:

^(r) = ut(r)e*r (6-41)

where k is the wavevector and uk(r) is a function that has the periodicity of the 
crystal lattice; ^(r) is a plane wave [exp(zk • r)] modulated by uk(r). The spinup 
electronic density due to electron i at point r is p- (r); it is given by the probability 
density of finding the i electron of spinup at the point r, that is, |w(r, T)|2 = 
|«'(r,T)|2,or

p)(r) = |w(r, T)|2 (6.42)

The magnetization at the point r due to the electron i is related to the difference in 
electron density Ap/(r) = p] — p\ and has the expression

M(r) = - gpB s,- [ p} (r) - p((r)] = -gpB^sApi(x) (6.43)
i i

where sz is the spin angular momentum of the electron i.
The interaction energy of the magnetization M(r) at the point r with the 

magnetic dipole moment of a nucleus located at the origin, per unit volume, may, 
in principle, be written in the form of an interaction with a magnetic dipole field:

4tt r
(6.44)

which is valid only, for r / 0, of course, and may be written

ll’s = -M/ • y (6-45)

where Bs is the spin magnetic dipolar field and V is the volume.
Integrating over the volume of the atom, it follows for the dipolar field Bs due 

to the spin momentum of the electrons, that

Bv = t-SPb 52[3(s, -er)er -s,-]^3),-
47T

(6.46)
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with er the unit vector of the direction r and

(g3),= [ (6-47)

the mean cubic radius of the electrons with spin s. When the spin density has 
spherical symmetry, the value of (6.46) is zero; this arises because the magnetic 
dipole field inside a spherical shell is zero, since it involves the integral

rir
/ (1-3cos2 3) sin# d3 = 0 (6.48)

where 3 is the angle between s and er in Eq. (6.46).
For the electrons that have a nonzero density at r = 0, as the 5 electrons (and 

the py2 electrons in the heavy atoms), there is also another term in the hyperfine 
field, the Fermi contact term, which will be derived below.

The contribution of the magnetization to the magnetic induction inside a 
sphere with uniform magnetization M(0) is (Jackson 1975, Section V.10):

B = ^^M(0)
4tt 3 v ’ (6.49)

The magnetization due to a single 5 electron is

M(0) = -g/zBsp(0) = - g/zBs|^(0)|2 (6.50)

where p(0) is the electronic density at the origin.
Substituting the expression of M(0) into B [Eq. (6.49)], we obtain for the 

contribution to B of the electron spin density sp(0) at the nucleus (the Fermi 
contact term)

B =
47T j 

with the corresponding interaction energy

(6.51)

Wc = 4tt~38^bT P(O)I (6.52)

Using the fact that p(Q) has the dimension of r-3, we may introduce the 
expression of the mean value of r~3 ({r"3)^ for electrons that contribute to the 
contact interaction (mostly s electrons), absorbing into rc the factor 8tt/3 and the 
ratio g/2 (e.g., Bleaney 1967):

47T 1 (6.53)
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The resulting magnetization is proportional to the difference between the up 
and down electron spin densities. The spin density due to the superposition of the 
contributions of all the orbitals at r = 0 (each one of quantum number ri) is

p(0)tot = £{|<M0,ni2 - l-MO,!)!2} (6.54)
n

Since the s electrons have I = 0 and their spatial distribution is spherically 
symmetric, Bf is their only contribution to the hyperfine field.

The incomplete shells (and also the conduction electrons; see Section 6.5.2) 
may also give rise to another contribution to the hyperfine field, through the 
modification of the radial distribution of the closed shells, thus producing a 
noncompensated spin density at the origin. The expression is the same as in 
Eq. (6.49), with p(0) = p(0)tot and with the sum performed on every shell, both 
complete and incomplete. This leads to an s magnetization equal to M'(0) at the 
nucleus, and this term of the hyperfine field, called the core polarization field, acts 
through the contact term and is written

BcP=^yM's(o) (6.55)

This term is dominant in the hyperfine field of the S-state rare-earth ions, such 
as Gd3+, and in the ions of d transition metals, such as Fe. In the free Gd3+ ion, 
the core polarization field has a value of Bcp = —21 T; in metallic Fe, it is —27.5 T. 
In the series of tripositive rare-earth ions, the core polarization field is pro­
portional to the spin component of the total angular momentum J, given, in 
tesla, approximately by (Netz 1986)

Bcp = -6(g-l)J (6.56)

In the actinides the core polarization field can be much larger than in the rare- 
earth elements; in the Am2+ ion (S state), for example, the core polarization field 
is -220 T.

6.3.2 Orbital Contribution to the Magnetic Hyperfine Field

We will now compute the field due to the orbital motion of the electrons. Taking 
this time the inverse point of view, we will obtain the vector potential at the point 
r due to the nuclear magnetic dipole moment located at the origin (Fig. 6.2).

This vector potential is given by

A(r) = Mo M/ x r 
4tt |r|3 (6.57)
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Figure 6.2 The nuclear magnetic moment creates a vector potential A(r) at point P, of 
coordinate r, where there is an orbital current of density J(r).

The interaction energy of the nuclear vector potential A(r) with the electronic 
current density Je(r) is the volume integral1

1 This expression has to be divided by 2 in the case where the vector potential A(r) includes 
contributions of the current density J (not our present case).

IV - - f A(r) • J,(r)rfv = - ' J-W
Jv wjv |r| wjv |rp

(6.58)

where we have used the permutation of the mixed product

a • (b x c) = c • (a x b) = b • (c x a) (6.59)

We may take the nuclear moment out of the integral; using Je(r)du = v dq, 
where v is the velocity, dv is a volume element, and dq is an element of charge, it 
becomes

(6.60)
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The orbital angular momentum of each electron is (r x mev) = Yh. Using

dq = -e{rt 3) (6.61)

where (rz 3) is the average over the coordinates of the electron with orbital 
momentum 1, it leads to, summing over N electrons:

=S E (6-62)
4?r mp 4?ri e i

substituting the Bohr magneton — eh/2me.
Finally, the total hyperfine field due to the various electrons, including dipolar 

spin terms, the contact term, and the orbital term, may be written using Eqs. 
(6.46), (6.51), and (6.62), and the approximation g — 2:

B = - 3(s/-er)er](rs3), + s,(r<.3), -l/(r/ 3),} (6.63)

Neglecting the differences in the effective radii that appear in the spin, contact 
and orbital hyperfine fields, i.e., making the approximation

^}i = {r-3}i = {r73}l (6.64)

we obtain for the expression of the total hyperfine field due to the N electrons

B = - 3(S- • er)er] + si - 1>Kr 3)<
47T (6.65)

For an atom with several electrons and LS coupling, the more usual form of 
coupling of the spin and orbital angular momenta S and L, the orbital 
interaction takes the form, assuming that all the electrons in the orbit have the 
same value of (rz-3):

WL = = (g)2MB(^)(I.L)(r ;-3) (6.66)

From which, if we write

(6.67)
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it follows

47T
(6.68)

for the expression of the total orbital hyperfine field.
For a free atom (or molecule) with several electrons, the hyperfine field is not 

given in terms of the spin and orbital momenta of the individual electrons (Eq. 
6.65), but in terms of S and L, or the total angular momentum J = S + L. The 
hamiltonian of the total magnetic hyperfine interaction can be written

7Yhf = Al J (6.69)

where I and J are angular momentum operators of the nucleus and of the ion. In 
the more general case A is the hyperfine tensor; when A is a number, it is called 
the hyperfine interaction constant. The description of the interaction in terms of 
the hyperfine field Bhf in fact applies when A has uniaxial symmetry 
(Az = A » Ay,Ax): 

^hf — AI J — ~iiI • Bhf (6.70)

and we may express the hyperfine field operator Bhf as a function of the hyperfine 
constant A:

Bhf — ~ (6-71)

For T > 0 K. J has to be substituted by its thermal average (J)r.
From this definition, it is clear that the hyperfine field represents an effective 

field, that acting on the nuclear moment, leads to an interaction equal to the total 
hyperfine interaction. If B due to the electrons varies from point to point, Bhf is 
an average value on the volume of the nucleus. For example, in the derivation of 
the contact hyperfine field we have used the value of the spin density at the origin 
p(0)s; in fact, the contact field is related to the average of the density in the region 
occupied by the nucleus. Since nuclei of different isotopes of a given element have 
different shapes and different average radii, they will in general feel different 
average spin densities. Thus, the hyperfine fields (or hyperfine constants) will 
also be different. This effect, called hyperfine anomaly, is represented by △, 
defined quantitatively by the relation

± = + (6.72)
^2 g2

where A{, A2, gi, and g2 are the hyperfine constants and nuclear g factors of two 
isotopes. The values of △ are normally very small; an exceptionally high value of
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-0.5% was observed for the hyperfine anomaly with the isotopes 151 and 153 of 
Eu in salts of Eu2+ (Baker and Williams 1962).

We see from Eq. (6.69) that the hyperfine interaction couples the angular 
momentum of the nucleus (I) and the total angular momentum of the atom (J). 
The total angular momentum (atomic plus nuclear) is

F = I + J (6.73)

with the corresponding quantum number F, called the hyperfine quantum number.
There are several experimental techniques that allow the determination of Bhf: 

nuclear magnetic resonance (NMR), perturbed angular correlation (PAC), 
Mdssbauer spectroscopy (MS), and so on. This is done experimentally from 
the determination of the eigenstates of 7Yhf. The eigenstates are

EMj — with Mj — fi —I + 1, • • • + I (6-74)

Therefore, we may determine from the experimental measurement of the 
separation between the energies of the hyperfine substates:

(6.75)

The measurement of Bhf through NMR (see Chapter 8) consists in the 
determination of the frequency of the electromagnetic wave (in the radio­
frequency or microwave region) that induces transitions between the nuclear 
hyperfine substates. The frequency i/0 for which this occurs satisfies

hv$ — (6.76)

Knowing g7, we may determine the value of the field Bhf [from Eq. (6.75)] since 
pN, the nuclear magneton, is a constant. The observed hyperfine splittings △£ 
are very small, in the range 10 -10 J (10~ -10- eV); this corresponds to 
NMR frequencies in the range from a few megahertz to a few gigahertz.

6.4 CONTRIBUTIONS TO Bhf IN THE FREE ION

As we have seen previously, a free ion with an incomplete electronic shell 
presents three contributions to the magnetic hyperfine field: an orbital term, a 
dipolar term, and a term due to the polarization of the closed shells (McCausland 
and Mackenzie 1980, McMorrow et al. 1989):2

2 We have followed these references in discussions in the next sections.

®hf ®orb ®dip ®cp (6-77)
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The field Borb originates from the orbital angular momentum L of the incomplete 
shell; it is the most important term for the non-S rare-earth ions. The dipolar 
field Bdip results from the interaction between the spin of the ion and the nuclear 
magnetic moment. We have included in this term both contributions of the 
electronic dipoles: the dipolar term in the strict sense, and the contact term due to 
the s electrons.

The core polarization field Bcp arises from the deformations of the internal 
closed shells due to an incomplete shell (e.g., the 4/shell). The incomplete shell 
affects the radial distribution of electrons of spinup (parallel to the spin of the 
unfilled shell) differently from that of spindown electrons. As a result of the 
exchange interaction, electrons of the closed shells with spinup are effectively 
attracted toward the unfilled shell. This leads to different densities of spinup and 
spindown electrons in the volume occupied by the nucleus. The resulting 
polarization, or magnetization, interacts with the nuclear magnetic moment 
through the Fermi contact interaction.

In general, Borb > Bdip and also Borb > Bcp; if L = 0, Borb = 0,Bdip = 0 
(by spherical symmetry), and Bcp is dominant. This is the case, for example, 
with the hyperfine fields measured at nuclei of the ions Eu2+ and Gd3+ (where 
L = 0).

6.5 HYPERFINE FIELDS IN METALS

The hyperfine interactions of a rare-earth ion located in a metallic matrix will be 
modified. On one hand, the exchange interactions and the interactions with the 
crystal field will modify the intraionic interactions previously described by 7Yhf; 
on the other hand, there will arise interactions with the conduction electrons, and 
with the magnetic and electrostatic fields due to the neighbor atoms. The total 
hamiltonian includes in this case intraionic interactions (7YZ) and extraionic 
interactions

Whf = H' + H" (6.78)

Normally, for ions with L 0, H' H", but for ions with L = 0 (and S 0),
and for nonmagnetic ions (£ = S = 0), we may have 7/ « H".

We will study separately the intraionic interactions and the extraionic 
interactions of an ion placed in a metallic medium.

6.5.1 Intraionic Interactions in the Metals

We have already seen that there is a hierarchy in the interactions of the free ion of 
the rare earths:

7YL5(L,S)»HeZ(J)»7Yhf(J,I) (6-79)
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with 7Yel(J) — W(exchange) + 7Y(crystal field). Therefore, the hyperfine inter­
action 7Yhf is a perturbation in the hamiltonian of the ion, and does not affect 
much the Mj levels defined by the exchange interaction [i.e., by the magnetic field 
acting on the ion, or molecular field (see Chapter 3)].

We may, with the purpose of discussing the mechanisms that affect the 
hyperfine field at the nucleus of an atom in a metallic matrix, separate this 
field into two parts: one part of the ion in the presence of other ions, and another 
“extraionic” part, which includes external fields, effects of the conduction 
electrons, and effects of the neighbor magnetic atoms:

Bz = B' + B" (6.80)

The intraionic interaction in a metal is the modified dipolar magnetic 
interaction (see Section 6.3.2):

(6.81)

In the cases where the interaction energy of the ion with the crystal field is 
much weaker than the Zeeman interaction, the expectation value (J) is the same 
as that obtained for the free ion, and the intraionic term is equal to the free ion 
field:

B' = Bhf (6.82)

6.5.2 Extraionic Magnetic Interactions

The extraionic magnetic field B" that acts on the nucleus in a metal is equal to

B" = Bext + B£p+B"+B"rb (6.83)

where

Bext = applied magnetic field
Bjip = dipolar field (due to the magnetic dipolar moments in the sample)
B''e = field due to the conduction electrons
B'orb = transferred term induced by the orbital moment.

The dipolar field is given by

Bdip — 52 ( 47rr5) ‘ rj)rj rj (My)]

j \ J/
(6.84)

where the sum is made over every magnetic dipole /i of the sample, excluding the 
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one from the same atom in which nucleus the field is being measured (parent 
atom). The dipolar field is usually divided into three terms. To compute them, 
one thinks of a sphere, with radius much smaller than the dimensions of the 
sample, but larger than the atomic distances: the Lorentz sphere. The first term is 
due to the dipoles inside this sphere, and it is zero for cubic crystal lattices. The 
second term is due to the free magnetic poles on the inside surface of the spherical 
cavity; it is equal to |//OMZ and is called the Lorentz field (Mz is the local 
magnetization in the Lorentz sphere). The last term is the demagnetizing field, 
arising from the poles at the surface of the sample. This term accounts for the 
contribution of the dipoles outside the Lorentz sphere.

The demagnetizing field (Section 1.2) is given by

(6.85)

where Nd is the demagnetizing factor, which amounts to | for spherical particles 
in the SI (4tt/3 in the CGS system), and M is the sample magnetization. Note that 
for spherical samples the Lorentz field and the demagnetizing field cancel each 
other (for Mz = M).

The field at the nucleus due to the conduction electrons has three contribu­
tions: one due to the polarization of the electrons by the parent atom (B"), 
another associated with the polarization due to neighbor atoms (B"), a third 
term A?0Bext that arises from the polarization induced by the external magnetic 
field (the latter is responsible for the Knight shift, observed in NMR measure­
ments in nonmagnetic metals; Section 6.5.4). Therefore

B"e = B" + B" + (6.86)

B" is usually called the transferredfield; sometimes under this denomination one 
includes also the dipolar field inside the Lorentz sphere.

The extraionic hyperfine field due to the conduction electrons is a sum of 
parent and neighbor contributions:

Bf'e = Kp{ap}T + KncT (6.87)

with lfrp}T representing the thermal average of the parent atom spin at 
temperature T, and a = — (gz — l)(J')r the projection of the average
spin of the atoms of the matrix. If the matrix is a rare-earth alloy, typical values 
of the constants in this case will be: Kq — 0.005, Kp « 5 T, and Kn « —5 T. In 
RA12 intermetallic compounds the measured values are Kp « -5.7 T and 
Kn k 0.8 T (McMorrow et al. 1989).

The contribution of the orbital momentum of the neighbor atoms to the 
extraionic field is given by

B:rb = ^orb(2-g)(J)r (6.88)
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Estimates on rare-earth alloys give A?orb « 4.4 T and in RA12 intermetallic 
compounds A?orb « 0.25 T.

The local extraionic field for a given configuration of neighbor atoms may be 
taken as proportional to their magnetic moments, or to the projection of their 
spins We may therefore write,

B" = £/(r,)(<7,.)r (6.89)
j

where f (ry ) is a spatial function, dependent on the crystal structure of the matrix; 
the sum is made over the relevant neighbors, located at the positions ry . The fields 
corresponding to each configuration can be determined with NMR spectroscopy 
when their lines in the spectrum are resolved. This happens when the linewidth is 
smaller, or of the order of the difference in field due to a nearest neighbor, and to 
a distant neighbor of the impurity atom.

In some cases the oscillating character of f as a function of |r7 | has been 
demonstrated (Fig. 6.5). The contribution of the neighbor moments located at ry 
may be modified (or amplified) by atoms in sites i that are common neighbors of 
the probe atom and of the atom j. The moment at ry modifies the moment of the 
atom rz, and this change affects the hyperfine field at the probe. The perturbation 
of atom z, and therefore, its amplifying effect, depends on the number (z?ZJ) of 
neighbors of j in a nonlinear way, following a function g(«/j). In this case we can 
speak of indirect transferred hyperfine interaction:

B* = (6.90)
J

where the sum includes only atoms j that are neighbors of an atom i neighbor of 
the probe atom. This type of transferred interaction is observed, for example, in 
intermetallic compounds of rare earths and iron, in which the iron atoms act as 
paths for the indirect transferred interactions.

6.5.3 Hyperfine Fields Observed Experimentally

Hyperfine fields have been measured with different experimental techniques; 
each technique has a characteristic measurement time, typically in the range 
107l 0 9 s. Therefore, in systems that present thermal fluctuations in times 
shorter than these, the observed hyperfine fields may have a null value; this is 
normally the case for measurements in paramagnetic materials and for magnetic 
materials above the critical temperature Tc. For this reason, hyperfine fields are 
usually measured in materials that are magnetically ordered, such as ferro­
magnets and antiferromagnets below the ordering temperature.

These measurements have been made in many magnetically ordered systems, 
under different experimental conditions. The conditions that may affect the value
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Table 6.I Values of the hyperfine fields Bhf (in tesla) measured at low temperature (4.2 K), 
computed values of the field of a free ion (Bfl) and the core polarization field (Bcp)

Element or Ion *cp (T) (T)
Fe — -27.5 -33.9
Co — -21.5 —21.5 (bee)
Ni — -7.5 -7.5
Gd — 17 -21 -35
Dy 635 -15 +590
Ho 796 -12 +737.1
Np6+ 380 21 —-

of the observed hyperfine field include the chemical state of the ion in whose 
nucleus Bhf is measured, the temperature, pressure, the concentration of 
impurities in the matrix in which the ion is located, and the distance between 
it and an impurity. Some Bhf values are given in Table 6.1, with a preference for 
metallic matrices; the signs of Bhf follow the convention that they are positive 
when this field is parallel to the atomic magnetic moment.

Table 6.1 illustrates how the hyperfine fields in the magnetic systems vary 
with the atom in which Bhf is measured, with the chemical form in which the 
atom is found, and so on. The free-ion values are derived from measure­
ments made in paramagnetic salts, corrected for crystal field effects. The fields 
listed in Table 6.1 vary from several tens of tesla to several hundred teslas. Some

Figure 6.3 Normalized graph of the hyperfine field in metallic iron as a function of temperature, 
measured at 57Fe nuclei through Mdssbauer spectroscopy. The continuous line is the measured 
magnetization versus temperature, and the dotted line is the variation of NMR frequency with 
temperature.
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Figure 6.4 Variation of the hyperfine field Bhf in ferromagnetic alloys of the rare earths, as a 
function of the average parameters = (g - 1)Jof the alloy. The measurements were made at 4.2 K 
through the NMR of 165Ho. [Reprinted from M. A. H. McCausland and I. S. Mackenzie, Nuclear 
Magnetic Resonance in Rare Earth Metals, Taylor & Francis, London, 1980, p. 410.]

observations on the variation of Bhf, from atom to atom, can be made from the 
inspection of Table 6.1: (1) the values of Bhf for the ions of the 3d series may reach 
tens of teslas; (2) the fields for an S-state rare-earth ion (e.g., Gd3+) are of the 
same order of magnitude; and finally (3) Bhf reaches hundreds of teslas at nuclei 
of non-S ions (L 0) of rare earths and actinides.

There are countless measurements of Bhf, at different nuclei, different ions, 
different matrices, different conditions of temperature, and pressure, and so 
forth. As examples of some experimental results we can show the variation of Bhf 
with some parameters: in Fig. 6.3, the variation of the hyperfine field measured in 
metallic Fe, as a function of the temperature; in Fig. 6.4, where it is shown that 
Bhf is a function of the mean value of the quantity (g - 1)J, in a solid solution of 
rare earths; and in Fig. 6.5, the last example, which shows the dependence of the 
hyperfine field at Fe diluted in aluminum, as a function of the distance to another 
iron impurity.

These two last examples (Figs 6.4 and 6.5) show that, in a metal, the hyperfine 
field measured on a given site is affected by the atoms that occupy the neighbor 
sites. In the first example, the field measured at the holmium nucleus varies with 
the mean value of (g — 1) J of the alloy; that is, it is affected by the mean value of 
the projection of S over J of the sample. In the last example, the dependence of 
the effect of the iron moments on Bhf is emphasized. The most remarkable 
observation in this case is the oscillatory dependence of this influence—the 
contributions, for example, of the first and second neighbor shells may have
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Figure 6.5 Relative change in hyperfine field AShf/B^Fe) at Fe nuclei in a Fe-AI matrix, as a 
function of the distance of the Fe atom to an Al impurity, measured with Mdssbauer spectroscopy of 
57Fe. [Reprinted from M. B. Stearns, Phys. Rev. 147, 446 (1966).]

opposite signs. Both examples may be understood if we consider that local 
magnetic moments induce in a metal a long range polarization. This idea was 
presented by Vonsovskii (1946) and Zener (1951), and by Ruderman and Kittel 
(1954); this last model was initially applied to nuclear magnetic moments, and 
leads to oscillatory polarization of the conduction electrons (Chapter 3).

6.5.4 The Knight Shift

The NMR frequency of a nucleus in a diamagnetic insulating salt is different 
from that in a metal, for the same value of the applied static magnetic field. This 
difference arises from the polarization of the conduction electrons in the metal, 
which contribute an extra magnetic field, and therefore shift the resonance 
frequency.

The application of an external field B polarizes the conduction electrons, 
creating a magnetization Mz(0), and leading to an additional magnetic field at the 
nucleus [from Eq. (6.49)]:

AB = -^^M'(0) (6.91)
4?r 3

The magnetization in this case is given by (Narath 1967)

M'(0) = (|u(0)|2)fXB (6.92)

with x the Pauli susceptibility per atom, (|u(0)|2) the amplitude of the electron 
wavefunction at the origin, and (• • -)F indicating an averaging over all electron 
states at the Fermi level.
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The nuclear magnetic resonance of a nucleus with gyromagnetic ratio 7 in the 
total magnetic field B + AB will then be observed at the angular frequency

W = 7|(B + AB)| = 77?(1 +^^<|M(0)|2)4 (6.93)
\ 47T 3 J

The displacement of the angular frequency due to the electronic polarization 
is therefore given by

AW = 7fi(^)y(|W(0)|2U (6.94)

This difference is found between the NMR frequency of a nucleus in a non­
magnetic metal and the frequency in a diamagnetic insulating salt.

The shift Au; is generally positive. The relative (or fractional) shift Acj/lj is 
called the Knight shift. It does not depend on the applied magnetic field (or on the 
frequency, when measured under the form AB/B)

V = (s)T(l“(0)|!>rt (<’'95)

The relative shift Alj/lj generally increases with the atomic number Z and is 
practically independent of the temperature; it is of the order of 0.1-0.3% for 
many metals; for copper, its value is 0.232% (see Table 6.II).

6.6 ELECTROSTATIC INTERACTIONS IN METALS

The electrostatic hyperfine interactions in condensed matter are modified, in 
comparison to the situation of the polarized free ion. The electric field gradient 
(EFG) at the nucleus is affected by contributions of the electric charges at the 
other atomic sites. This contribution, or lattice EFG, is in turn augmented by 
deformations induced in the closed atomic shells. It is customary to describe this 
term and the effect of these deformations by writing the effective extraionic EFG 
in a solid as

eq" = U - 7oo)^iatt (6.96)

Table 6.11 Values of the Knight shift measured at low temperature

Element Pt Rh Zr

NB/B (%) -3.54 +0.43 +0.33

Source: Reprinted from Landolt-Bornstein, Magnetic Properties of 3d Elements, New Series III/ 19a, 
Springer-Verlag, New York, 1986. with permission.



COMBINED MAGNETIC AND ELECTROSTATIC INTERACTIONS 183

where eglatt is the lattice contribution to the EFG and 7^ is an antishielding 
factor called the Sternheimer factor. The value of 7^ varies between —10 and 
— 100; thus, the effective field gradient in a solid is multiplied 10-100 times. The 
value of the Sternheimer factor computed for the rare earths is approximately 
—75; for Am2+, it is —137.

In a metallic matrix, the effects due to conduction electrons have to be taken 
into consideration; Eq. (6.96) becomes

eq" = (1 - 7oo)^iatt + (1 - R)eqce (6.97)

with R a core correction factor specific to the probe atom, usually taken as zero, 
for lack of reliable computed values, and eqCQ the conduction electron 
contribution.

An experimental correlation was observed between the two terms of this 
equation (Raghavan et al. 1975), leading to a formulation in terms of the lattice 
EFG:

^''-(l-7oo)(l-^Watt (6.98)

with the parameter K & 3 for a number of noncubic metals (Raghavan et al. 
1975); K is dependent on the atomic group of the element (e.g., Hagn 1986).

Therefore the electrostatic hyperfine interaction in a solid, taking as principal 
axes of the EFG tensor the crystal axes abc, is given from Eq. (6.20) as

= 4/(2/"- 1) P7" ~ /2 + ~ (6’99)

with eq substituted by eq" and the x, y, z axes substituted by a, b, c.
Some values of the electric field gradient at the nucleus of different elements 

are given in Table 6.III.

6.7 COMBINED MAGNETIC AND ELECTROSTATIC INTERACTIONS

The total hyperfine hamiltonian for a nucleus subject to magnetic and electro­
static interactions is

^hf — ^mag + (6.100)

In a coordinate system with the axes coincident with the principal axes of the 
electric field gradient tensor, with a magnetic hyperfine field in the direction 
(0, (j)f we may write the complete hamiltonian

^hf = -g/jLNB[lz cos 0 + (4 cos (j) + Iy sin cf) sin 0]

+ 4/(2/^ 1) “ /2 + ~ /2)1 (6101)



Table 6.111 Values of the electric field gradient Vzz (in 1O20 V m 2) at some nuclei in different matrices

Nucleus 59Co 67Zn l57Gd l59Tb 237Np

Matrix Co Zn
Temperature (K) 4.2 4.2

(IO20 Vm”2) 2.86 x 10“4 3.402 x I(T3

Gd Tb a-Np
1.6 4.2 4.2

1.62 x 10“3 4.148 xlO"2 1.40 x 103; 4.45 x 103
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For the case of 77 = 0 and 0 — 0 (when one of the principal axes of the electric field 
gradient tensor coincides with the direction of the hyperfine field), Whf is 
diagonal, and the eigenvalues can be given in closed form, as a function of the 
quantum number m\

Em = —gp,NBm + 4/(eJg [3m2 - I {I + 1)] (6.102)

In the case of Bhf and Vzz forming an angle 0 0, for a magnetic interaction
much more intense than the electrostatic interaction (eqQjfiH <C 1), and r; = 0, 
the eigenvalues are obtained by perturbation theory as

E'm = Em+ < m\HQ\m > (6.103)

where E'm is the eigenvalue in the new coordinate system, where the z axis 
coincides with the direction of B. The nuclear spin operators have to be expressed 
in this coordinate system; we choose the new axes in such a way that z is in the 

Figure 6.6 (a) Energy levels of a nucleus with I = j and (c) positions of the NMR lines of the 
corresponding spectrum. The diagrams show various situations: (1) zero magnetic and 
electrostatic interactions; (2) nonzero magnetic interaction with zero electrostatic interaction, 
and (3) nonzero magnetic interaction with weak electrostatic interaction.
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plane x'Oz. The operator [3/2 — I1} becomes, in terms of the components of the 
operators in the (x ,/,z) axes:

3(4cos6> + /' sin#)2 -I1 =4(3 cos2#- l)(3/f -/2)

+1 sin 2#(/y' + /'4) +1 sin2 #(/'2 - l'y2) (6.104)

Substituting Hq with Eq. (6.104) into Eq. (6.103), we finally obtain for the energy 
eigenvalues in the case of dominant magnetic interaction (eqQJ[iH <C 1), 77 = 0 
and arbitrary #:

Em = + e [3m2 - /(/ + 1)] 3cos g—I (6.105)
11 X J

To obtain the energy eigenstates for the general case, that is, for an arbitrary 
ratio of electrostatic and magnetic interactions, and for any value of the angle #, 
we need to diagonalize the hamiltonian (6.101). These eigenvalues have been 
computed and are presented in graphical form (e.g., Parker 1956, Matthias et al. 
1962, Kundig 1967).

Figure 6.6 presents in schematic form the sublevels of the hyperfine energy in 
the case of combined magnetic and electrostatic interactions, for I — |, and the 
corresponding NMR spectra.
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EXERCISES

6.1 Nuclear Populations. Compute the Boltzmann populations of a nucleus 
with I = 2 and magnetic moment 0.3 pN in a magnetic induction of 25 T, 
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for the temperatures 300 K (room temperature), 4 K (liquid helium 
temperature), and 0.01 K. What is the magnetic induction necessary to 
produce an energy separation AE approximately equal to kT at room 
temperature?

6.2 Hyperfine Interaction in the Free Atom. Rubidium possesses two stable 
isotopes, Rb (/ = j) and Rb (I — £). The electronic configuration of 
rubidium is that of the alkali metals, containing one single electron in an s 
state. Draw a scheme of the hyperfine structure of these two isotopes, and 
show the splitting of the energy levels in the presence of a strong applied 
magnetic field.

6.3 Hyperfine Interaction in Metals. Assume that a spin of a conduction 
electron in a metal feels a magnetic hyperfine field arising from the 
interaction with the nuclear spins. Let the component z of the field felt 
by the electron be given by

where may be Show that = (a/lN^N and (B4) = 3(fl/27V)47V2 
for 1.

6.4 Effects of the Crystalline Field. For a good number of rare earths that 
present magnetic order, the hyperfine field is proportional to (Jz), the z 
component of the total angular momentum of the ion. In the presence of a 
crystalline field, the value of (Jz) may be reduced, the so-called ‘quenching’ 
of the angular momentum. If Hm describes the exchange interaction and 
Hcf the interaction with the crystal field, in the limit in which HCf Ku 
the reduction in {Jfi is given by:

f /C\21
= J 1- -

I \ a / I

where X is a factor relating to the magnitude of the molecular field, and the 
C values are the nondiagonal elements of the crystal field, given by

1 J~2 1
c2 =--- T

Assume that HCF is given by

«CF = fl Jl

where J_ is the spin-lowering operator. Compute (Jz) for Tb3+. Take 
B22/k « 1 K, g = J = 6, and X « 100 K.



NUCLEAR MAGNETIC 
RESONANCE

7.1 THE PHENOMENON OF MAGNETIC RESONANCE

Let us imagine a system of N identical particles with magnetic dipole moment /i 
and collinear angular momentum sufficiently separated in such a way that the 
interactions among them are negligible. In the initial configuration the directions 
of the individual moments are distributed at random, every orientation being 
equally probable. The projections of the magnetization M [M = (1/K) /iz] 
(where V is the volume) are zero along any direction; the same applies to the total 
angular momentum.

If a static magnetic field Bo is applied to this system at the time t = 0, the 
moments will start to precess around the direction of Bo (we will define the z axis 
as the direction of Bo) in such a way that a projection of the /th magnetic moment 
on the z axis will be /zcos0z. In the classical description, 0 may have any value; 
since, by hypothesis, they are all equally probable, a parallel orientation is as 
likely as an antiparallel one, and therefore Mz = (1/K) J2z/zcos0z = 0. The 
magnetic moments precess at the same angular frequency w = 
and consequently, maintain the phase differences among themselves (g is the g- 
factor and 7 is the gyromagnetic ratio). As a result, the components of M 
perpendicular to Bo remain zero (Mx = My = 0).

Such a system of isolated spins, therefore, cannot be magnetized (Fig. 7.1). 
More precisely, an isolated system under the action of an external magnetic field 
would acquire a magnetization very slowly, as the spins lost the magnetic energy 
through radiation.

In a more realistic situation, the spins are energetically coupled to a thermal

189
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Figure 7.1 Ensemble of isolated magnetic moments precessing under the action of an applied 
magnetic field.

reservoir, which we will call the lattice', the microscopic mechanisms through 
which this coupling occurs will not be discussed at this point. Under the action of 
a magnetic field Bo, the spins will exchange their magnetic energies Et —

with the reservoir, of temperature T > 0, and the populations 
p(Ej) will follow a Boltzmann distribution. Since the states with lower energies 
Ei are more populated, a magnetization parallel to z will appear. This process of 
thermalization (or relaxation) occurs in a characteristic time Tb called the spin­
lattice relaxation time. The coupling between the spins and the lattice gives rise, 
under the action of Bo, to a nonzero component Mz.

If the system had a certain transverse magnetization .(0) at the moment of 
application of the field 2?ok, the phase differences among the isolated spins would 
gradually change, their motion would lose coherence, and the transverse mag­
netization would decay. One contribution to this relaxation of the perpendicular 
components of M is due to interactions among the spins. This spin-spin inter­
action leads to different precession frequencies, and therefore modifies the relative 
phases in the precession; each spin feels the random fields due to the other spins and 
as a result, its precession becomes momentarily slower or faster. This process 
through which the spin system loses the “memory” of its initial phase relation has a 
characteristic time T2, usually called spin-spin relaxation time.

Magnetic resonance is observed when a system of spins with magnetic energy 
levels (called Zeeman levels') separated by an interval AE = Em — Em_\ is 
irradiated with photons of energy ha = &E (Figs. 7.2 and 7.3). The radio­
frequency field associated with the electromagnetic radiation induces transitions 
among the states of energy Em of the system, which absorbs energy.
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Figure 7.2 Schematic representation of a device for the observation of nuclear magnetic 
resonance: a radiofrequency source of variable frequency sends photons that impinge on the 
sample under a static magnetic field. The reflected radiation is detected and measured.

7.2 EQUATIONS OF MOTION: BLOCH EQUATIONS

The magnetic dipoles that are present in the spin system also have associated 
collinear angular momenta. Assuming that the system is formed of atomic 
nuclei, of angular momentum /?/, the magnitudes of the magnetic moments /i 
and angular momentum I will be connected through the relation

/i = 7/1I (7-1)

where 7 is the nuclear gyromagnetic ratio (or magnetogyric ratio). The magnetic 
moment may also be written [Eq. (6.3)]

Figure 7.3 Schematic quantum-mechanical description of the phenomenon of magnetic 
resonance: at resonance, the photons of electromagnetic radiation carry an energy equal to the 
difference AE between the energy levels of the magnetic moments-magnetic field system.
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where is the nuclear magneton and g is the nuclear g factor (or spectroscopic 
splitting factor) of the nuclear species in question. Analogously to the electronic 
magneton—the Bohr magneton [Eq. (2.4)]—the nuclear magneton is given by 
[Eq. (6.4)]: 

where mp is the proton mass. Since this mass is 1836 times larger than the electron 
mass, the nuclear magneton is smaller than the Bohr magneton, by the same 
factor. The value of the nuclear magneton is 5.0509 x 10-27 JT-1.

The rate of variation of the angular momentum (dhl/dt) is equal to the torque 
acting on the elementary dipoles; in an applied magnetic field B the torque is 
given by /ixB, and we have

d(hV) Ida n= = (7.4)
dt dt

or

/a = 7 /i x B (7.5)

The magnetization M = ny, (n is the number of moments per unit volume) 
follows the same equation:

M = 7 M x B (7.6)

Equation (7.5) describes classically the motion of the magnetic moments (or the 
motion of the magnetization). The quantum-mechanical description of the 
motion of /i (taking /i as the magnetic moment operator /i = g^NI) is given, 
in the Heisenberg representation, by the commutator

z7z/2=[/i, H] (7.7)

where H is the hamiltonian of the interaction of the moment with the magnetic 
field.

In a magnetic resonance experiment, the magnetic moment /i is in the 
presence of a static field Bo and is submitted to an electromagnetic wave (Fig. 
7.3). The moment /i feels the oscillating magnetic field (/) associated with the 
electromagnetic wave. The total applied field is therefore

B(/)=B0+B1(z) (7-8) 



EQUATIONS OF MOTION: BLOCH EQUATIONS 193

and the hamiltonian of the interaction with the magnetic moment is

H = -m • B(/) = -g/dNI • B(/) = —77zl • B(/) (7.9)

Expanding the scalar product, we obtain

— /I • B(/) — —g[lN(lxBx + lyBy + IZBZ) (7-10)

Using the commutation rules for Ix,Iy, and Iz, and inserting into Eq. (7.7), it 
follows for the x component that

= ig2p1N{IyBz - IzBy) (7-11)

Taking all the components, we obtain

z7z/T = ig2 /i2n I x B = ig/J'NP' x B (7-12)

In terms of the gyromagnetic ratio 7 = g/iN/h, the equation of motion of the 
operator is written

= 7 /I X B (7-13)

which is formally identical to the classical description given by Eq. (7.5). The 
magnetization of this system of moments is given by M = 77 (/1), where (/1) is 
the expectation value of the operator /i(t) and n is the number of magnetic 
moments contained in a unit volume. If we include the temperature dependence, 
the thermal average of the operator //(/) is given by the trace of the density matrix 
in the equilibrium state p0:

(mW) = Tr[poM] =
Tr[M(/) exp(-rt0/AT)]

Tr[exp(—7^0/A'T)] (7-14)

is the hamiltonian of the interaction with the field; from Eq. (7.13), we obtain 
the equation of motion for the magnetization:

M = 7M x B (7-15)

which is the same as the classical equation of motion [Eq. (7.6)]. The magnetiza­
tion of an ensemble of nuclei with spin I = | in the presence of a static magnetic 
field pointing along the z direction is illustrated in Fig. 7.4; note that the 
magnetization M also points along z.

We have so far considered the motion of the magnetization in the presence 
of a magnetic field B(/), neglecting relaxation processes. From Eq. (7.6) it
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follows that

^-M2 =4(M-M) = 2M- = 2M-(7M x B) = 0
dt at at (7-16)

that is, the magnitude of M is constant in this case, M only changes direction, as a 
function of time.

Taking B = 5k, the three components of Eq. (7.15) are

dMx (7.17a)

dMv—y. = -^mxb 
dt '

(7.17b)

dMz_Q 
dt

(7.17c)

From Eq. (7.17c) it immediately follows Mz(t) = The first two equations 
are coupled and may be written as follows, making M± = Mx ± iMy\

whose solution is

dM± dMx , dMy .
,t = ±l ,t =^nBM±at at at (7-18)

thus

M±(t) = M±(0)e^Bt (7-19)

Mx(f) = MX(G) cos(75/) + Afy(0) sin(75/) (7.20a)

My(t) = -MX(G) + My(G) cos^Bt) (7.20b)

Mz(t) = Mz(fi) (7.20c)

These equations describe the motion of M as a simple precession around z, 
with angular frequency w = yB.

When relaxation processes are active, the motion of M may be described 
with an equation derived from Eq. (7.6), assuming that simultaneously with 
the precession, the deviations of the longitudinal and transverse components 
of M in relation to equilibrium decay exponentially, with characteristic times 
7\ and T2, respectively. With this hypothesis, we obtain a phenomenological
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equation

Figure 7.4 Magnetization M of an ensemble of magnetic moments of nuclei with spin I = 
showing the alignment of M with the magnetic field B, in the z direction.

Mxi + Mv\M = 7M x B--------
^2

[Mz - Af(0)]k 
Tx

(7.21)

which is known as the Bloch equation (Bloch 1946).
In Bloch’s equation, the same relaxation time (T2) was assumed for the x and 

y components of the magnetization. The x and y axes are equivalent because the 
physical system has axial symmetry along the z direction, which is the direction 
of the magnetic field. The z component relaxes with a different characteristic time 
T\; this difference in behavior is connected to the physical fact that the transverse 
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relaxation (process P2) conserves energy, while the longitudinal relaxation does 
not. In fact, P2 may also involve exchange of energy, in the case of saturation (a 
condition defined in the next section)—the high rf power causes stimulated 
emission, and the transverse relaxation time is modified.

Besides the static magnetic field, there may be a rotating magnetic field, given 
by (in the stationary frame)

BiO) = [icos(cj/ + 0) + j sin(cj/ + </>)] (7.22)

We may take the phase </> = 0, which is equivalent to having B! = j^i at t = 0.
Substituting Bo = Bok and B^/) into the Bloch equation [Eq. (7.21)], the 

components will be

dMx n •—— = yM Bo - yMzBi smart - —
at 12

dMv Mv
—77- = yMzBx cos ujt - yMxB0 - 

dt ±2

dMz
—— ^MXBX smcj/ - ^MVBX coswt — 

dt y
Mz - 71/(0) 

Tx

(7.23a)

(7.23b)

(7.23c)

The description of the motion of the magnetization is considerably simplified 
if we adopt a coordinate system with axes x',/, z that turns around the z = z 
axis with angular frequency equal to the Larmor frequency [Eq. (2.10)]. We will 
show below how we can rewrite the Bloch equations in this new system.

7.3 MAGNETIZATION FROM ROTATING AXES

Let us consider two coordinate systems xyz and x'y'z with a common origin; we 
assume that xyz rotates with angular velocity -Q relative to xyz. Since both 
coordinate systems have the same origin, the position vectors of a point P, r and 
r', will be identical, although with different coordinates in the two systems. The 
time dependence of any vector, however, differs when described from xyz or 
xyz. For example, the time derivative of the unit vectors of the directions x, y, 
and z, (i, j, and k, respectively) are nonzero if described from xy z\ since they 
have unitary lengths, only their directions can change. If we describe the 
derivative of the vector i from a coordinate system xyz that rotates with 
angular velocity — Q relative to xyz, we will have

— = 12 X 1 
dt

(7-24)

and analogously for j and k. The time derivative of an arbitrary vector
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V = Kxi + KJ + Kk in this rotating system will be

/V dvx. dvy. dvz, Tz d'\ rr d'j iz /k-— = -7^1 + -/j + -X k + vx~r+vy-f-+vz— dt dt dt dt dt y dt dt
(7-25)

or

d'N dN n ,,—— — ——p Q x V 
dt dt

(7-26)

where dN/dt is the derivative in relation to the stationary system (xyz).
For the magnetization vector evolving under a constant field Bo, we will have

—— —— + Q x M = 7M x Bo + Q x M 
dt dt

(7.27)

thus

= M x (760 - Q) 7M x (Bo - — 

w/ \ 7/
(7.28)

The gyromagnetic ratio 7 can be positive or negative, but in this chapter we 
are assuming 7 > 0. We may write this equation for a rotating coordinate 
system, under the same form that it presents in the stationary system:

with the effective field given by

d'M .. „
— = 7M x Beff 
dt

(7.29)

a 
11 pq11& (D (7.30)

We may choose a rotating system such that Beff = 0; it suffices to take its 
angular frequency

Q = 750 = w0 (7-31)

that is, it is sufficient to choose a system that rotates around the z axis with 
angular frequency equal to the Larmor frequency. In this case

thus, the magnetization is stationary in relation to this system.

^ = o 
dt (7-32)
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A time-dependent magnetic field, rotating in the stationary coordinate 
system, given by Eq. (7.22), will be in the rotating system:

The effective field in the presence of becomes

(7.33)

®eff — + Bl (Z)----
7

(7-34)

and in the coordinate system (%',/, z') that rotates at the Larmor frequency, the 
only field acting on the magnetization is B^/), and the equation of motion 
becomes

^ = 7MxB((/)
(7.35)

Therefore, the rotating system simplifies the description of the motion of spins 
given by Eq. (7.6).

Thus, the Bloch equations [Eq. (7.21)] in the system rotating with angular 
frequency —Q take the form

The field Beff is given by:

M'=-,M « (B. - 5 + B,) -
\ 7 / T2 7\

(7.36)

Beff — (bq------^kz + Bii'
\ 7/

(7-37)

In a rotating coordinate system turning with angular frequency Q = lj, with 
natural frequency of precession (Larmor frequency) = ~/B() [Eq. (7.31)], the 
magnetic field can be written

Beff — - (cj0 — u,)k/ + 7?iiz
7

(7.38)

And the equations of motion in the rotating frame become

(7.39a)

dM' , , . . M'
—L = -(w0 - + yMzBi - —

di ±2
(7.39b)
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dt 1 y 1 Tx
(7.39c)

The Bloch equations under this form show the evolution of the components of 
the magnetization in the rotating system, as a function of the angular frequency 
of precession cj in this system; cj0 is the Larmor frequency.

There are two experimental forms of studying magnetic resonance. In the first 
and more traditional way, called the continuous-wave (CW) technique, the 
behavior of the resonant system is studied in the stationary regime, with the rf 
(oscillating field) applied continuously. The resonance curve is obtained by 
recording the magnetization (or the absorbed power, see discussion below) as a 
function of the frequency w. In the pulsed-resonance method, on the other hand, 
the spins are submitted to short (compared to T\ and T2) pulses, and the 
evolution of the magnetization is observed as a function of time.

The continuous-wave technique can also be employed keeping the frequency 
uj fixed and sweeping the applied field; the shape of the lines is the same as that 
obtained sweeping in frequency, with y(B — Bq) in place of (cu — cu0). To make 
sure that the system remains in the steady state, the sweep has to be slow in 
comparison with and T2 (slow passage); the condition is 
dB/dt < B^TyT^2. We will consider both techniques:

Continuous-Wave Technique The solution of the equations of motion in the 
stationary regime is obtained making

dMx _ dMy dMz _ o
dt dt dt

The system of equations (7.39) can be solved, with the following result (in the 
rotating axes):

=-------- ----------------------------
1 + (Wo-w)27’22 +72^T1T2

(7.40a)

My ~ i + (Wo - + 72b2t, r2 M(0) (7.40b)

= _ 1 + (cvo-^)2T2 --
i + (Wo-u;)2r2+72B2T1r2

(7.40c)

The curves M'x and M’y are known as curves of dispersion (out-of-phase 
magnetization) and absorption (in-phase magnetization). In the cases of low rf
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field intensity, T2 (or 727?2T1T2 < 1), the magnetizations are

X = 7#i(uo -cj)T2 
1 + (lJq — Lj)2

M(0)

^B\T2
1 + (lJq — Lj)27~2

M(0)

M'z = M(0)

(7.41a)

(7.41b)

(7.41c)

The graphs of M’x and M’y (or the corresponding susceptibilities) versus 
— are shown in Fig. 7.5; the lineshape of these curves is called

lorentzian. The full width at half maximum (fwhm) of the lorentzian is 
△c^i/2 = 2/T2 (in radians per second) (Fig. 7.5); in frequency units, the width 
is 2/ttT2 Hz. In the resonance curve obtained with fixed frequency, varying the 
magnetic field, the width is = 2/7 T2, in units of B (teslas).

The three components of the magnetization are proportional to Af(0), the 
equilibrium magnetization of the spin system. In the case of magnetic resonance 
of nuclei, Af(0) is the nuclear magnetization, related to the static nuclear

Figure 7.5 Curves of the components of the magnetic susceptibility [Eq. (7.49)]: x (dispersion), 
and x (absorption), versus (u?0 - u)T2. The lineshape of these curves is usually called lorentzian 
[Eqs. (7.41a) and (7.41b)].
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susceptibility

D

M(0) = XnH = Xn- 
Mo

(7-42)

where H is the magnetic field intensity. The nuclear susceptibility Xn is given as a 
function of the angular momentum I of the nucleus (for kT >> IwhIH):

= MqH72^2/(/+ 1)
Xn 3kT (7-43)

From this expression we can see that the nuclear magnetization, and therefore 
the intensity of NMR signal, are inversely proportional to T, following the Curie 
law [analogous to Eq. (2.63)].

The nuclear magnetization under an applied field Bq, for n nuclei per unit 
volume is given by Eq. (7.42), or M(0) = 7iB0727z2/(/ + 1)/3^T. This quantity is 
a measure of the intensity of the NMR signal; the NMR relative sensitivity for a 
given nuclide is equal to Af(0)/Af(0)^, where is the magnetization of the 
same number of hydrogen nuclei. The relative sensitivity multiplied by the 
natural isotopic abundance gives the absolute NMR sensitivity; the values of 
these quantities are listed in Appendix A for the different nuclear species.

In an NMR experiment, the applied time-dependent field (rf field) is linearly 
polarized, and can be described in the laboratory as a superposition of two 
rotating fields, one turning clockwise, and the other counterclockwise:

Bj (/) = B\ (i cos wt — j sin art) (7.44a)

and

Bi(z) = 5i(icoslj/ + jsincj/) (7.44b)

Adding up, one obtains the oscillating field along the x axis:

Bi(/) = 27?1icoscj/ (7-45)

We may write the two rotating fields in terms of the projection wz of the angular 
velocity vector with the equation

= cosljzZ + jsincjz/) (7.46)

for wz positive and negative.
The components of the magnetization in the laboratory Mx and My may be
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obtained from the components in the rotating system:

Mx — M'x cos wt + M'y sin wt (J Ala)

My = — M'x sin wt + M'y cos wt (7.47b)

From (7.47a) one can define the susceptibilities x and X of the spin system 
submitted to the linear field in the laboratory, of amplitude 2BX:

Mx = (.X cos wt + X sin utyiBx (7.48)

The magnetizations M'x and M'y are then directly proportional to the 
susceptibilities x and X\ X and ~X respectively may be considered the real 
and imaginary components of a complex susceptibility

X = X~ iX (7.49)

The component x is also called the dispersive part and x \ the absorptive part of 
the susceptibility.

The x component of Bi in the laboratory can be written, under complex form, 
as

B\x(t) = 2B\eiut (7.50)

and the magnetization becomes

Mx(t) - He(2xBxe^) (7.51)

which is equivalent to Eq. (7.47a).
The average power absorbed by the system of spins is given, in terms of the 

magnetic energy E by

dE s <7BP = —- = -M — 
dt dt (7-52)

where this expression has to be averaged over a full period (from t = 0 to 
t = 'lir/w). Since we are considering the stationary regime, the average of dB/dt 
can be identified to the instantaneous value:

~di = 17 = x Bli/ = (7’53)

and Eq. (7.52) becomes

V = (7-54)
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The absorbed power is therefore proportional to x , or M'y. The expression 
for the average power V is then

o) (755)

computed here for a situation far from saturation (i.e., for x^Bi 7^ T2 C 1).
Since M'y is proportional to x\ we can re-write the expression of the power:

P = wx'B\ (7.56)

Therefore, the power absorbed by the spin system is proportional to the square 
of the amplitude of the rf field B\.

Pulsed Resonance Technique In this technique, more widely used, the 
radiofrequency field is applied in pulses of short duration. At resonance, 
with Bi (/) rotating at the Larmor frequency, this field is stationary in the system 
of rotating axes. By varying the duration of the pulse, we can make the 
magnetization turn any angle we want, for example, 7r radians (or 180°); in 
this case the magnetization is turned to a position opposite to that of thermo­
dynamic equilibrium. Equations (7.39) describe the evolution of the components 
of the magnetization as a function of time.

In general, the values of B{ employed in pulsed resonance are larger, 
corresponding to the situation of saturation described above. Pulsed magnetic 
resonance is discussed in more detail in Section 7.6.

7.4 RELAXATION

The longitudinal relaxation, of characteristic time Tj, and the transverse 
relaxation (T2) are caused by fluctuations in the magnetic field and in the electric 
field gradient felt by the nuclei. These fluctuations originate in the random 
motions associated with the thermal vibrations. Their effects depend on the 
timescale in which they occur, or, which is equivalent, depend on their Fourier 
spectrum. Thus, the fluctuations in the interactions that have a characteristic 
time much shorter than the inverse of the Larmor frequency of the nuclei, that is, 
below about 10-7 s, do not contribute to the relaxation times. The motion of the 
electrons and the molecular vibrations are included in this category.

In this section we will consider the contributions to the relaxation of the 
fluctuations of the magnetic fields. The fluctuations <5B measure the extent of 
deviation of the instantaneous field from its average value:

<5B = B -B (7.57)

where B is the average value of the magnetic field.
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If the spectrum of transverse fluctuations bB±(w) has components in the 
Larmor frequency (cj0 = 7 #), these will be able to induce transitions between the 
states of different magnetic energy of the nucleus. This is equivalent to the fact 
that in pulsed NMR the rf field B} (cu) is effective for the inversion of the spins 
when it oscillates with angular frequency equal to the Larmor frequency, that is, 
w — cj0- Through transitions between the states with Am = ±1, the nuclear 
magnetization reaches its equilibrium value in a time Tx. This relaxation induces 
(or is equivalent to) a broadening of the resonance line, which is called secular 
broadening.

The longitudinal fluctuations bBz have the effect of increasing or reducing the 
angular velocity of precession, and therefore, affect the relative phase of the 
rotating spins, contributing in this way to T2. If, at the instant Zo = 0, the spins 
are precessing in phase in the xy plane, after a time of the order of T2 they will 
lose coherence and the transverse magnetization M± will decay to zero.

In general we can assume that the fluctuations of the components B^t) of the 
field (with i = x, y, z) are isotropic. To study the time variation of the fluctuations 
of B it is useful to define the correlation function (or self-correlation) between the 
value of the field fluctuations bB^t) and bB^t + t) at two instants t and t + r as

F = bB^bB^t + r) (7.58)

We assume that F varies exponentially with the interval t, with the form:

F = 8B1i exp(—|r|/r0) (7-59)

where r0 is the correlation time, a measure of the average time during which the 
spin feels the magnetic field fluctuation of magnitude bB. If the correlation 
function has the above form, and if r0 is the same for all the components z, we can 
conclude that the relaxation rate 1/T2 is given by (Slichter 1990, Chapter 5)

1 1 1
T~2~ (7.60)

where 1 / T2 is the term due to the time fluctuations of Bz (secular broadening) 
and 1/2 Tj is the broadening due to the lifetime of the state (nonsecular 
broadening).

We can obtain an approximate expression that relates the fluctuations bB to 
the relaxation time. Let us assume that a fluctuation bBz, acting during a time t 
on a nucleus, produces a significant variation of phase of the precessing spins, of 
the order of one radian. This dephasing will be given by

be = 7 bBzt i (7.61)

Variations of the phase of the individual spins of this order will make the
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transverse magnetization of the ensemble of spins decay to zero. We may, 
therefore, consider this time t « T2. It follows that

r2
1

7
(7-62)

A more realistic estimate should consider that this loss of phase memory will 
come about after n increments 6BZ in the instantaneous magnetic field, each 
value of the field remaining constant for a time r0 (correlation time). At the end, a 
time t = nrQ will have elapsed, and the mean square dephasing will be

602 = tl601 = ng 6B2zg = g 6B2tr0 (7.63)

And finally, it follows, identifying this time t for the dephasing of one radian to 
T2, that

yr = 72 
72

(7-64)

where we can note that 1/T2 depends on r0. From this relation we may conclude 
that for shorter correlation times r0, the rate 1/T2 is reduced, a phenomenon 
known as motional narrowing. In other words, very rapid variations in the field Bz 
have on the average no effect on the transverse relaxation; this may occur, for 
example, for a nucleus that diffuses through a liquid, feeling for very short times 
the local magnetic dipolar fields due to the different atoms.

A more careful derivation of the expressions for the rates \/Tx and 1 / T2, still 
assuming isotropy in the fluctuations of B, leads to the following results (see 
Carrington and McLachlan 1967):

(7.65)

(7.66)

which contain the spectral density function J(cu):

J(w) = (7-67)

for u = (the Larmor frequency). The spectral density function J(cu) is in fact 
the Fourier transform of the correlation function, and is related to the average 
power of the fluctuations at the frequency cu.

One can note in Eqs. (7.65)-(7.66) that the longitudinal and the transverse 
relaxations depend in a different way on the correlation time r0: goes through 
a minimum for cjoto ~ 1, and the same does not occur with T2. The minimum of
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Correlation Time t0(s)
Figure 7.6 Variation of the secular broadening rate (I/T2) and nonsecular broadening 
(1/2T-,) = (1/Tj) as a function of the correlation time r0. Note the maximum of 1/Tj for 
tq 1 /uQ (cj0 is the Larmor frequency).

1\ occurs for correlation times comparable to the inverse of the Larmor 
frequency namely, for fluctuations of the magnetic fields with larger Fourier 
intensity at this frequency.

From the expressions (7.65) and (7.66) we can see that the fluctuations of all 
the components of the magnetic field contribute to T2, but only the fluctuations 
of the transverse components (x and y) contributes to T\. We can also note that 
in the case cjoto T the equality T\ = T2 (for isotropic fluctuations) follows 
from Eqs. (7.65) and (7.66).

The behavior of the relaxation times versus correlation time can be seen in 
Fig. 7.6. One can imagine the figure as representing the relaxation processes in a 
liquid that becomes gradually more viscous. With the increase in viscosity, the 
correlation time r0 increases and the local field fluctuations at the resonant 
frequency decrease, becoming zero for 1- For short correlation times, 
on the other hand, one can see that T\ increases with 1/t0; for long correlation 
times, it increases with r0 [from Eq. (7.65)].

In general, the correlation time r0 is a function of the temperature of the
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Table 7.1 Nuclear relaxation times T| and T2 measured in some metallic systems (in ms)

Nucleus Matrix

7) T2

4.2 K = 300 K 4.2 K = 300 K

57Fe Fe 10-500 0.9-6.5 10-500 0.9-6.5
59Co Co 0.2-17 0.1-0.5 0.088 0.025

Source: I. D. Weisman, L. J. Swartzendruber, and L. H. Bennett, in Techniques of Metal Research, 
E. Passaglia, Ed., Vol. VI, Part 2. Copyright © 1973, Wiley-Interscience, New York. Reprinted with 
permission of John Wiley & Sons, Inc.

sample. A common dependence of r0 is of the type

T0 = T0° exp (Ef\ 
\kT)

(7.68)

which corresponds to a thermally activated process, with activation energy Ea. 
Table 7.1 presents some values of T\ and T2 observed experimentally.

7.4.1 Longitudinal Relaxation

Let us consider a system of spins in the presence of a magnetic field, and in 
contact with a thermal reservoir (or lattice), that is at a temperature T (Fig. 7.7). 
The characteristic time after which the system, if disturbed, returns to the 
thermal equilibrium configuration is Tj, which is the inverse of the relaxation 
rate of the longitudinal magnetization (1/TJ in Bloch equations (Section 7.2). 
When the spin subsystem is in equilibrium with the lattice, the occupation of its 
energy states is a function of T given by the Boltzmann distribution (Fig. 7.8).

Figure 7.7 Coupling between the reservoir (lattice) at temperature TL and the spin system at 
temperature Ts. The characteristic time in which the spins reach the lattice temperature is .
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Figure 7.8 Representation of the populations of the energy states of an ensemble of spins at 
temperature T, following a Boltzmann distribution.

In situations where the interaction among the spins is much stronger than that 
between the spins and the lattice, the population of the levels of an ensemble of 
spins can be described by a temperature Ts; this is called the spin temperature, 
and it may, in principle, be different from the lattice temperature.

Let T\ be the time interval in which the spin subsystem, with N energy levels Et 
and probability of occupation p^E^, will reach the lattice temperature TL. The 
computation of 1\ is done deriving an equation that describes the way in which the 
temperature of the spins evolves with time to reach the value TL (Slichter 1990).

The average energy of the Ns spins, if the probability of occupation of the 
levels is p^E^ — pb is

{E}T = '£piEi (7.69)
i

and the rate of variation of this energy is

d(E)r = d(E)rdl 
dt d (3 dt 1 }

where /3 = \/kT. But d(E)T/dt = dpi/dt, where dpjdt = 
Hj^PjWp ~PiWy), and Wy is the transition rate from the state i to the state j. 
Thus

= ^Ei(PjWji-PiWij) (7.71)
at ij

or, changing the indices

^EL^E^Wy-p^) (7.72)

ij
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Summing Eqs. (7.71) and (7.72) and dividing by 2, we obtain

^-^^Wji-PiW^E.-E^ 

ij
(7.73)

Assuming a Boltzmann distribution, the probabilities will be given by

exp(-/3E,) 
Erexp(-M)

(7-74)

We can expand the exponential:

exp(-/3E;) = 1 - BE, + ± + • • • (7-75)

Therefore, in the limit of high temperature, p, ~ (1 - jdE^/N. In this limit we 
will have

d$ dfd^Pl ' Nd/3^ 13 l) 1 (7-76)

or

d/3

Using Eq. (7.70), it follows that

d{E)T _ 
dt (7.78)

When the spin system is in equilibrium with the lattice (the thermal reservoir), 
d{E}T/dt = 0, and it comes out of Eq. (7.71) that

(7.79)

where pf and pf are the equilibrium probabilities of occupation of the i and j 
energy levels, that is, the probabilities of occupation of the levels at the lattice 
temperature.

This is the so-called principle of detailed balance—in equilibrium, the 
product of the probability of occupation of a level by the probability of 
transition of this level to another level is equal to the probability of 
occupation of this other level times the probability of transition in the

d{E}T _ 1 N

J_ c2

' dt
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inverse sense. Then

wji = W«^l = ^exp[-(£i. - Ej^l] (7.80)

Substituting the expression of Wjt given by this equation into Eq. (7.71), we 
obtain, after expanding the exponential

(7-81)

From Eq. (7.78), it follows that

dt 2 £,£z2 'L (7.82)

This is the rate of change of the spin temperature toward the lattice temperature 
Tl; this defines the longitudinal relaxation rate 1/Tp

d/3^/3L-(3 
dt T\

(7.83)

The time T\ is thus the time constant of the exponential evolution of the spin 
temperature. The expression of the relaxation rate 8 — is given by

. i
Tx 2

(7-84)

The time T\ is the characteristic time elapsed until the system of spins 
establishes thermal equilibrium with the reservoir (e.g., the crystal lattice or 
the electron gas). In a time of the order of the occupation probabilities pt 
reach the equilibrium values p[.

7.4.2 Transverse Relaxation

The relaxation time T2, introduced in a phenomenological way into the Bloch 
equations [Eq. (7.21)], measures the time interval in which the transverse 
magnetization tends to zero. In the expression of the component My(uj) of the 
magnetization, T2 is directly related to the inverse of the width of the resonance 
line (T2 = 2/Acji^).

The contribution to T2 due to the fluctuation in the dipolar field of a 
neighboring nucleus can be estimated, taking as a starting point the fact that
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this field is approximately given by [from Eq. (6.40)]:

63d, Mo M
4tf r3

(7.85)

where is the nuclear magnetic moment and r, the separation between the nuclei. 
From Eq. (7.62)

1 4tt r3
T2 =------ ---------

^Bdz /j.o
(7.86)

For protons, we have 7 = 2.675 x 108 radians s 1 T 1 and // = 1.41 x 10-26 J 
T-1; using r = 2 A, we obtain T2 ~ 10 4 s for the relaxation time due to the 
dipolar contribution of the other nuclei.

The magnitude of the fluctuation in the field 8B?Z obtained in this example is 
« 10-4 T, or 1 G. This is therefore the magnetic resonance linewidth expected in 
a solid, from nuclear dipole-dipole interactions; these interactions are usually 
the most important source of line broadening in solids. In solids with para­
magnetic ions, the dipolar fields due to the atomic moments dominate, and the 
linewidths are much larger (or T2 much shorter).

7.4.3 Nuclear Magnetic Relaxation Mechanisms

Longitudinal Relaxation The simplest way to study the mechanisms that give 
rise to nuclear magnetic relaxation in a solid is to consider the nuclei submitted to an 
oscillating magnetic field due to the lattice vibrations. The longitudinal component 
Bz(t) of this field contributes to the relaxation rate 1/T2, and the transverse 
component contributes to 1/T2 and 1/G, as seen in Section 7.4.

Taking Eq. (7.84) as a starting point, we may compute the relaxation time T\ 
for a given spin system, provided the rate Wy is known; this quantity will depend 
on the microscopic mechanism that couples the spins to the thermal reservoir 
(interaction with the electron gas, with phonons, magnons, etc). In nonmagnetic 
insulators, phonons are the dominant mechanism; in nonmagnetic metals the 
coupling is done mainly through the conduction electrons. In magnetic matrices 
the relaxation mechanism may involve magnons.

If we assume that the thermalization of the nuclei occurs through their 
interaction with the electron gas, the magnetic relaxation rate l/7\ may be 
calculated from the expression of the transition probability Wy. In this case, Wy 
is a function of the densities of states of occupied and nonoccupied electronic 
states:

Wy = £ £ wjw = £ wjko^f(k^\\-f{k'a'y\ (7.87)
k(J0CC k'a'non__occ kk'cjo1

where f (ka) is the Fermi-Durac distribution, k is the electron wave vector, and a
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labels the spin state (up or down). Assuming that the interaction between the 
nuclei and the electrons is the Fermi contact interaction (see Section 6.3.1)

r = y7e7„A2I-S5(r) (7.88)

where 7e and are the electronic and nuclear gyromagnetic ratios, and Wjka ik'a> 
is given by

q,q'=x,x'

xM0)|2M0)|26(£) - Et + Eka - E^) (7.89)

Substituting in Wy and making the calculations for the case of one electron, we 
obtain (Slichter 1990):

T = ^7eW < Iwfc(0)|2 >Ef n\EF)kT (7.90)

where (| uk (0) |2) Ef is the density of electrons at the Fermi level atr = 0, and«(EF) 
is the electronic density of states, also at the Fermi level. This gives approximately

1 = A#7247rfc 
T B A

This equality is the Korringa relation. £sB/B'\s the Knight shift (see Section 6.5.4). 
Note that the preceding result points to a relaxation rate due to conduction 
electrons proportional to the temperature. This can be simply understood from 
the fact that Wy is proportional to the function/(E) [ 1 — /(E)], which, near the 
Fermi level, is a narrow function, of width proportional to kT.

In ferromagnetic metals, another magnetic relaxation mechanism is the Weger 
process (see McCausland and Mackenzie 1980, Bobek et al. 1993), which consists in 
the nuclear relaxation via emission of magnons, that exchange energy with the 
conduction electrons. The resulting relaxation rate is also proportional to T.

The longitudinal relaxation times in magnetic materials are usually longer in 
domains than in domain walls; for this reason the measured relaxation times 
are in general dependent on the rf power used in an NMR experiment (see 
Chapter 8). The relaxation rates measured at high power in metals (exciting 
preferentially nuclei in domains) usually present a linear dependence on 
temperature. This suggests that the relaxation in the domains has strong 
participation of the conduction electrons.

In those magnetic systems where the spin-spin interaction is weak compared 
to the spin-lattice interaction (e.g., 57Fe in domain walls in metallic Fe, 61Ni in 
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metallic Ni above 77 K), this last interaction dominates the transverse decay, and 
\/Tx is of the order of 1/T2 (Weisman et al. 1973).

Transverse Relaxation As shown at the beginning of Section 7.4, the 
transverse relaxation rate 1 / T2 depends on the time fluctuations of both the z 
component and the transverse components of the magnetic fields acting on the 
nucleus. The spin-lattice relaxation is a process that contributes to these 
fluctuations, as can be seen from the relation connecting 1/T2 and l/7\ 
[Eq. (7.60)]. More interesting is the study of the contributions of the spin-spin 
interaction to 1/T2.

In metals, the Ruderman-Kittel interaction, which consists in the coupling of 
a pair of magnetic moments through the electron gas, is one of the interaction 
mechanisms: one electron is scattered by a nuclear magnetic moment, then by 
another, and the information on the spin state of the first nucleus is thus 
transmitted to the second one. The resulting coupling of the nuclear moments 
can be described under the form

n = JRK(ry)I,-I,- (7.92)

where yRK is the effective coupling constant. This coupling does not depend on 
the temperature, since the conduction electrons neither lose nor gain energy, and 
therefore, do not depend on the existence of empty states to which they can be 
promoted. This interaction, relevant in the coupling between atomic magnetic 
moments [known in this case as Ruderman-Kittel-Kasuya-Yosida (RKKY) 
interaction] is discussed in Section 3.3.

Another mechanism of spin-spin interaction, relevant in the magnetically 
ordered materials, is the Suhl-Nakamura (SN) interaction. In this interaction, 
two nuclear magnetic moments are coupled through the hyperfine interaction of 
two atomic moments, the latter connected through the exchange interaction. We 
may describe this interaction as a coupling mediated by the emission and 
absorption of magnons. The transverse components of the angular momentum 
I are more effective in this process. The hamiltonian is written

(7.93)

It is important to remark the difference between these two interactions; in the 
Ruderman-Kittel interaction, only the relative orientation of the moments 
matter. In the Suhl-Nakamura coupling, only the components of I transverse 
to the quantization axis, in this case the direction of magnetization, participate.

The Suhl-Nakamura interaction is independent of temperature, has long 
range, and is the main mechanism of transverse relaxation in concentrated 
magnetic systems. For example, in metallic cobalt, the relaxation of 59Co 
(100% abundant) has an important contribution from the Suhl-Nakamura 
mechanism.
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7.5 DIFFUSION

In pulsed NMR the loss of memory of the transverse magnetization in liquid 
samples is enhanced by the diffusion of the nuclei toward regions of different 
magnetic field: this effect is called spatial diffusion. This effect gives rise to an 
attenuation factor that affects the NMR signal (specifically, the spin echo 
intensity, see next section), proportional to r3 (t is the separation between the 
two pulses), to the diffusion coefficient Z>, and to the magnetic field gradient 
(Carr and Purcell 1954). The spin echo intensity is given in this case by:

E(2r) A70exp —2t\ l rd 9B\2 
exp -D\y— —\ \ oz J 3 (7-94)

We may regard the spatial diffusion as another channel of transverse relaxation, 
which leads to shorter effective values of T2.

An analogous phenomenon is observed in solids with inhomogeneously 
broadened NMR lines. The nuclei excited in a frequency interval of the 
resonance line, interact with other nuclei, and distribute among these nuclei their 
magnetic energy. The loss of magnetization of the originally excited nuclei 
appears as a contribution to the relaxation, and this is referred to as spectral 
diffusion, or frequency diffusion.

In NMR experiments in magnetic materials, where the nuclei in domain walls 
are preferentially excited, this excitation in the domain walls may be transferred 
to nuclei in adjacent domains, in a special form of spatial diffusion.

7.6 PULSED MAGNETIC RESONANCE

The NMR technique requires the application, on the nuclear magnetic moments, 
of a static magnetic field and also of a magnetic field that varies sinusoidally with 
time. The latter may be produced, for example, through the incidence of 
microwaves. In the pulsed-resonance method, the radiofrequency (rf) is applied 
during time intervals that are short compared to the characteristic times of the 
nuclear spin system (the relaxation times 7\ and T2 of the system). An rf pulse 
submits the nuclei to a magnetic field of intensity B\ stationary in the rotating 
reference system (e.g., parallel to y and perpendicular to Bfy Such a pulse, with 
duration ta, will make the nuclear magnetization precess by an angle 0 given by

O^B^f (7.95)

where 7 is the nuclear gyromagnetic ratio.
The application of a tt/2 pulse (i.e., of such duration that 0 = tt/2) will take 

the magnetization to the plane xy (Fig. 7.9). In the laboratory reference system 
the magnetization will perform a motion of nutation; this is a precessional
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Figure 7.9 Time dependence of the transverse nuclear magnetization after a tt/2 pulse. This is 
the free induction decay (FID); the magnetization decays exponentially with a time constant T2* ■

motion with a variable angle with the axis of precession. In a reference system 
rotating at the Larmor frequency, the magnetization will precess around Bj 
(e.g., assumed to be parallel to /). After a tt/2 pulse, the transverse magnetiza­
tion is maximum; the magnetization that exists after this pulse is over, is called 
free induction. We may also use this expression to refer to the signal induced by 
the transverse magnetization on a coil.

The transverse magnetization remaining after the application of the pulse, or 
free induction, decays with time, since the motions of the individual magnetic 
moments lose coherence under the action of two factors: (1) each moment feels a 
magnetic field that varies randomly with time (due to fluctuations in B, especially 
arising from the other moments), and (2) the moments may feel different 
magnetic fields due to spatial field inhomogeneity. This free induction decay 
(FID) has a characteristic time T2 given by

T = 1 + 7AjB (7.96)
72 72

where T2 is the spin-spin relaxation time strictly considered (the term due to 
fluctuations in the field) and is the field inhomogeneity.

The term T2 gives a measure of the transverse relaxation inside each set of 
magnetic moments that precess with the same angular frequency wn (these sets 
are called isochrones or isochromats). The term 1/yAB is due to the field 
inhomogeneity; is the width of the distribution of values of B. All the 
relaxation processes (spin-spin, but also spin-lattice; see Section 7.4) that affect
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Figure 7.10 Time evolution of the longitudinal nuclear magnetization after a pulse of tt/2, 
showing the exponential recovery of the magnetization. In a time after the pulse, the 
magnetization differs by MQ/e from the equilibrium value Mo.

the lifetime of the nuclear Zeeman levels, contributing an energy uncertainty 
△E ^h/T2, are included in T2; in this way, T2 contains the contributions of the 
so-called homogeneous broadening. The term 1 / T2 is the thermodynamically 
irreversible contribution to 1/T2, and yAB is a reversible term (see discussion 
below).

In a long timescale (such that t T2 and t > TJ, the longitudinal component 
Mz of the magnetization returns to its equilibrium value MQ (Fig. 7.10). In the 
rotating system, after a pulse of tt/2, the magnetization, for t > ta and Bj = Bx \, 
will be

M'O) = Af0 + (1 - )k'j (7.97)

In the laboratory, we will have

M(/) = Af0 [(1 — + sina;/ e_(r-z«)/r2j Cosujt (7.98)

In the absence of magnetic field inhomogeneity, the transverse nuclear 
magnetization decays with the characteristic time T2; in inhomogeneous mag­
netic fields, when 1 /^AB C T2, it decays with T2 — 1 /^t±B. In zero-field NMR 
in magnetic materials (see Chapter 8), inhomogeneous broadening is important, 
and the last situation is the most usual.

The total magnetic induction, due to the ensemble of nuclear moments, is 
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E(t). It results, at each instant, from the precession of the sum of the projections, 
on the rotating y axis, of the magnetizations of the isochrones.

The expression of the decay of the free induction is obtained from the 
contribution to the transverse magnetization due to one isochrone, or packet 
of spins (e.g., Borovik-Romanov et al. 1984), with Alj = ujn - uj (difference 
between the frequency of the spin packet and the frequency of the applied rf). 
The magnetic moment of one isochrone is

m(Acj) — ^^(Acjj^Acj (7.99)

where F( Alj) is the NMR spectrum shape, and <5Alj is the frequency width of the 
spin packet.

Immediately after application of an rf pulse of duration ta along the x axis, 
the transverse magnetization due to one isochrone will be

^(Alj) — m(Acj) sin^-Z?!^) (7.100)

The magnetic moments begin to dephase, and there appears an x component of 
the magnetization. The perpendicular magnetization will be given in complex 
form by

mv = my — imx (7.101)

Including the time evolution, each isochrone contributes to the perpendicular 
magnetization

m±(Acj, t) — m(Acj) sin^-Z^) exp(-zAutf) (7.102)

where we have substituted

exp(-zAc^) = cos(Acc^) - zsin(Au^) (7.103)

To obtain the total free induction, it is necessary to sum over all the spin 
packets, that is, to sum over a frequency interval Alj where all the isochromats 
that have been excited are included. When this range of excitation is so large that 
it encompasses the whole NMR spectrum, the sum is made over the spectrum 
shape Z^Alj), and one can integrate from —oo to + oo:

m(t) = / F(Alj) exp(-zA^)^Acj (7.104)

The integral in this equation is equal to the Fourier transform G(t) of the 
lineshape, thus, the time dependence of the magnetization that gives the free
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induction can be written

(7.105)

If the lineshape is a lorentzian, with half-width l/Tj, the function F(Acu) has 
the form

F(Aw)=------------- Lp----------- 2 (7.106)
tt(Aw-Awo) +(l/r2)

In this case the Fourier transform is G(t) — exp(—t/T^), and we will have for the 
free induction decay

m(t) = m0 sin^B^J exp(-z/T2) (7.107)

which is the equation of an exponential decay with characteristic time an 
exponential decay with characteristic time corresponding to the inverse of the 
half-width of the NMR line is strictly correct only for the conditions of the 
present derivation.

The application of a sequence of two consecutive pulses leads to a new 
effect—the spin echo—discovered by E. Hahn in 1950. Let us exemplify with a 
pulse sequence (tt/2, tt) applied along the same axis y, separated by a time 
interval r (Fig. 7.11). Once the time r has elapsed after the first pulse (t ), 
the transverse magnetization vanishes completely. The inversion of the spin 
“pancake,” due to the action of the second pulse, places the spins that precess 
more rapidly behind the slower spins. Since the sense of precession does not 

Figure 7.11 Formation of the spin echo after a sequence of a tt/2 pulse and a tt pulse, separated 
by a time interval t. After the tt/2 pulse is applied in the y' direction (a), the nuclear magnetization 
aligns itself with the x! axis. Because of the inhomogeneity of the static field Bo and the spin-spin 
interaction, the isochrones precess with different angular velocities, and the magnetization in the 
x'y' plane decays to zero, with a characteristic time T2 (£>)■ In succession, a tt pulse is applied (c), 
and the spin packets refocus at the time 2t (d). The maximum in the transverse magnetization is 
the spin echo.
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change with this inversion—because it depends only on the direction of Bo— 
after a second interval of duration r all the spins refocus, producing a maximum 
in the transverse magnetization. This ensuing magnetization maximum consti­
tutes the spin echo.

The transverse magnetization that contributes to the spin echo at the 
frequency tu, due to a spin packet that precesses at the frequency un 
(Acu = un - cu), is given by (Hahn 1950):

m±(Acj, t) = m(Acu) sin^i^zj sin2 exp[—zAcj(z — 2r)] (7.108)

From this expression one can see that the echo is a nonlinear function of the 
angles of rotation 0a = ta and 0b = tb due to the two pulses. One can also 
note that the echo occurs at t = 2t. The maximum echo is obtained for 0a = tt/2 
and 0b = 7r. For two equal pulses of duration ta (i.e., tb — ta), we see that the 
maximum echo will arise when 0 — 2tt/3. For small values of 0, the echo is 
proportional to B^.

To obtain the total transverse magnetization, we have to sum over all the 
isochromats, that is, over the NMR spectrum shape [see remark on the 
derivation of the FID, before Eq. (7.104)]:

m(t) — rriQ sin2(7B1Zz,/2) / F(Acu) exp[—— 2r)]dAw

(7.109)

The result is the transverse magnetization at resonance after the second pulse 
(i.e., for t > t), in the rotating system (Hahn 1950):

-cos2^exp(—M expl—+ (7.110)
Z \ Z 7 0 / \ j r 2 /

with = ^Bx, and k a parameter proportional to the diffusion coefficient D (see 
Section 7.5). One can see from the first term that the echo is formed at the instant 
t = 2t, with a gaussian shape and a width at half-height of ~ 277. The term m(t) 
describes the free induction decay:

m(t) = -mosin^!^)

— Mz(r) sin^zj exp
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From this expression we can see (in the first term) the decay of the free induction 
(FID) with characteristic time T2.

The results shown above can be obtained more directly by solving the Bloch 
equations with a matrix method (Jaynes 1955, Bloom 1955).

As the echo is formed, the refocusing of the transverse magnetization is not 
complete, however; only the loss of memory due to the inhomogeneity, not the 
loss due to the spin-spin interaction, is recovered. This interaction produces 
random magnetic field fluctuations, and therefore the resulting decay (with 
characteristic time T2) is irreversible.

The spin echo is observed experimentally as the electromotive force (or the 
voltage) induced in a coil wound around the sample where the resonance is being 
observed; its magnitude is proportional to the time derivative of the magnetic 
flux due to the precessing moments. The echo signal is, therefore

= (7.112)

where c is the constant that takes into account parameters such as the quality 
factor Q and the filling factor of the coil. In a magnetic sample, the signal due to 
the precession of the magnetization m(t) is multiplied by the factor rj, the 
enhancement factor (to be discussed in Section 8.3). This factor rj amplifies the 
rf field felt by the nucleus, as well as the magnetic flux through the coil, due to 
the precession of the nuclear magnetic moments.

A remarkable aspect of the spin echo technique is the possibility of studying 
physical processes with characteristic time T2, even in the presence of a much 
faster relaxation, with rate 1 / T2 « 7 AB. In the continuous-wave (CW) techni­
que, a T2 process leads to a line broadening that is masked, in the case of a 
magnetic sample, by a much larger broadening due to the inhomogeneity (with 
which one associates the rate 7 AB). The pulsed technique allows the direct study 
of the relevant relaxation rates, instead of inferring them from the widths of 
static measurements, which may lead to errors due to the presence of the 
inhomogeneous broadening. The half width derived from a CW experiment 
would be equal to 1/T2 [Eq. (7.106)], containing, therefore, the sum of a 
homogeneous broadening (corresponding to the rate 1/T2) with an inhomo­
geneous broadening (rate 7AT?).

The spin echo technique also presents an advantage of practical character in 
relation to other pulse techniques; it involves measurement of signals after time 
intervals sufficiently long to allow the decay of the instrumental perturbation 
caused by the excitation pulses.

The large potential of the pulsed NMR technique comes from the fact that the 
signal in the time domain (either the free induction decay or the spin echo) can be 
easily Fourier-transformed to give the frequency spectrum. This is the basis of 
operation of Fourier transform NMR. The spin echoes or the FIDs contain 
contributions from a wide range of nuclear precessing frequencies because the 
excitation pulses have a broad Fourier frequency spectrum. For a pulse of width 
ta and frequency z/0, this spectrum has a half-width of the order of 2tt/ ta around 
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z/0. If the magnetic field inhomogeneity is not larger than this width, the full 
frequency spectrum can be obtained by Fourier transforming.

Besides the spin echo described here, known as the Hahn echo, other echoes 
have been observed; for example, a pulse applied at a time T after the pair of 
pulses, will produce an echo at time T + t, known as the stimulated echo.

7.7 QUADRUPOLE OSCILLATIONS

In NMR experiments where electric quadrupole interactions are combined with 
the dominant magnetic interactions (Section 6.7), the NMR spectrum has 2x7 
lines, where I is the spin of the nucleus. The lines are separated by a frequency 
interval Az/ = 2a, with a, the quadrupole interaction parameter, given by

<7113>

which depends on the electric field gradient eq (= Kzz), the nuclear quadrupole 
moment Q, and the angle 0 between the major axis of the electric field gradient 
and the hyperfine field; an axial EFG was assumed.

In pulsed NMR in systems that present only magnetic interactions, a spin 
echo is observed at t — 2r (Section 7.6); when there are also quadrupole 
interactions, other echoes may appear, depending on the nuclear spin I and 
the degree of homogeneity of the magnetic interaction (Butterworth 1965).

When the linewidth is such that the 21 lines cannot be resolved, there appear 
oscillations in the echo amplitude as a function of the separation r between the 
pulses (Abe et al. 1966). These oscillations may be interpreted as beats between 
the transition frequencies between unequally spaced nuclear Zeeman levels, an 
effect of the quadrupole interactions. The frequency of the oscillations is given by 
multiples of z/0 — where a is the quadrupole interaction parameter.

Abe and collaborators have computed the amplitudes of the quadrupole 
oscillations for the case I — |, using a perturbative method, and starting from the 
hamiltonian

— Hq + Tiint (7.114)

formed by a static part and a time-dependent part. The static part, with w — 
(see Section 6.7), is given by a magnetic term and an electrostatic term 

^0 — (^0 ~ + a^z (7.115)

and the time-dependent part takes a different form in the following time regions 
of the NMR experiment (Fig. 7.12): (1) when the first rf pulse is on (region I), 
(2) between the two pulses (region II), (3) during the second pulse (III), and
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Figure 7.12 Time regions in a spin echo NMR experiment. Region I, application of the first rf 
pulse; region II, interval between the pulses; region III, application of the second pulse, and finally, 
region IV, evolution of the magnetization with the formation of the spin echo.

(4) after the complete sequence (region IV). The time dependent part is written

TYint = ^\E in regions I and III (7.116a)

Hint = 0 in regions II and IV (7.116b)

The results show multiple echoes: one echo at time 2t (Hahn echo); other 
echoes at 3t, 4t, 5t, and 6t; and oscillating amplitudes for the different echoes. 
Leaving aside the exponential decay with constant T2, one obtains for the first 
echo an amplitude, in the case I — | given by (Abe 1966):

E^(2r) — Cq1) + cos(2at + <$i) + cos(4at + <52)

+ Cp) cos(6at + <53) + C41) cos(8at + 64) (7.117)

where the are phase angles. The second echo is given by

E^ (3r) = cos(2at + cos(6at + <53)

+ cos(l(W + 65) + cos(14flT + <57) (7.118)

where a is the electric quadrupole interaction parameter [Eq. (7.113)], the C
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Figure 7.13 Quadrupole oscillations in 59Co spin echo height, versus separation t between 
pulses, in the compound GdCo2, at (a) 4.2 K, and (b) 38 K. [Reprinted from A. C. Barata and A. P. 
Guimaraes, Physica 130B, 485 (1985), with permission from Elsevier North-Holland, NY.]

values are coefficients that depend on the matrix elements of the interaction 
matrix. From the preceding expressions one can see that the echoes present 
oscillations as a function of the time separation r between the pulses, and the 
value of the quadrupole interaction may be extracted from the spectrum of these 
oscillations (see also Fig. 7.13). This is a useful feature of these oscillations, since 
the quadrupole interaction may be measured in this way, even in cases where the 
quadrupole lines in the NMR spectrum are not resolved.
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EXERCISES

7.1 NMR Spectrum of xyiGd. Consider the nucleus of the isotope 157Gd that 
possesses spin I — | and p — —0.3398 pN. Let a hyperfine field = 10 T 
act on the nucleus. Compute the NMR frequency (in MHz) from the 
condition — 7^hf- Assume that, in addition to the magnetic interaction, 
there is an electric quadrupole interaction given by Eq. (6.23). Make a sketch 
showing how the energy levels will be modified by a quadrupole interaction 
that corresponds to 1% of the magnetic interaction, and also the NMR 
spectrum in the cases in which (a) the linewidth is smaller than the quadrupole 
splitting and (b) the linewidth is larger than the quadrupole splitting.

7.2 Rotating Reference System. Take the vector A(z) = Ax(t)x -F 
Ay(t)y + Az(t)z. Assume that the coordinate system x, y, z rotates with 
angular velocity Q.
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(a) Show that dx/dt — £lyi — Qzy, and so on.

(b) Show that dk/dt = (d\/dt)G 4- x A, where (d\/dt)G is the derivative 
of F seen from the rotating system G.

(c) If Q = where Bq is a magnetic field applied in the laboratory 
system, in the rotating system there will be no static field. Assume that a 
field B{ is applied along the x direction during a time interval t. 
Assuming that the magnetization points initially along z, find an 
expression for the time t at the end of which M will point along —z 
(neglect relaxation effects).

7.3 Ferromagnetic Resonance. Consider a spherical sample of a ferromagnet 
with anisotropy energy of the form UK — —K sin2 0 where 0 is the angle 
between the magnetization Ms and the axis z. Assume that K is positive. 
Show that in the presence of an external field Bq! the system will have only 
one resonance frequency given by = 7(^0 + Ba) where Ba — 2K/MS.

7.4 RF Saturation. Let a system with two energy levels of a spin in a magnetic 
field BqVl be in equilibrium at the temperature T. Let N\ and tV2 be the 
respective populations of the two levels and PF12, W2\ the transition rates 
1 2 and 2 —» 1. An rf signal is applied in such way as to induce a
transition rate PFrf between the two levels.

(a) Derive an equation for dMz/dt and show that in the stationary state

M = M° 
z l+2WriT{

where \/Tx = PF12 4- PF21. Note that as 2WrfTx <C 1, the rf does not 
appreciably modify the populations of the two levels.

(b) Define N = 4- A2, n — N\ - N2 and n0 = A(PF21 — PF12)/
(PF21 4- IF12), and from the expression of n write the rate of energy 
absorption from the rf field. What happens when PFrf approaches 
1/2T1? This effect is called saturation and may be used to measure Tx.





MAGNETIC RESONANCE IN 
MAGNETIC MATERIALS

8.1 NUCLEAR MAGNETIC RESONANCE

The nuclear magnetic resonance (NMR) in magnetically ordered materials— 
also called ferromagnetic nuclear resonance (FNR)—differs from the magnetic 
resonance observed in diamagnetic and paramagnetic materials in several 
aspects. These differences arise from the fact that in ordered materials there 
are two magnetic species in interaction: atomic nuclei and magnetic ions. NMR 
in magnetic materials is, therefore, more complex, being essentially a resonance 
of two coupled spin systems. It may be described through a pair of coupled Bloch 
equations: one equation for the nuclear magnetic moments, and another for the 
atomic moments (see Section 7.2).

The phenomenology of this type of nuclear magnetic resonance presents the 
following differences in relation to the usual NMR:

1. Hyperfine Fields. In the magnetically ordered materials (ferromagnets 
and antiferromagnets), the atomic nuclei are under the action of local static 
magnetic fields, roughly proportional to the spontaneous magnetization of the 
sublattice where they are located. These fields arise essentially from the hyperfine 
interactions (see Chapter 6), and allow the observation of nuclear magnetic 
resonance without requiring external applied magnetic fields.

2. Enhancement (or Amplification) of the Radiofrequency Field. In magne­
tically ordered materials, the time-dependent transverse magnetic field felt by the 
nuclei is much larger than the oscillating field Bft) applied to the sample. This 
effect can be explained as follows. Inside the domains, the field Bfit) tilts the 
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magnetization M from its equilibrium direction, and the transverse component 
of the hyperfine field (oc M) is many (10-100) times larger than the intensity of 
Bft). Inside the domain walls Br is also amplified by a factor of 103-105; this 
arises from the displacement of the walls by the rf field, and the consequent 
change in the direction of the hyperfine fields that act on the nuclei in this region, 
also generating the appearance of large transverse oscillating components of the 
hf field (see Section 8.3).

3. Linewidth. The NMR linewidths in magnetic materials are usually some 
orders of magnitude larger than those found in diamagnetic matrices. This is due 
to the distribution of hyperfine fields (and demagnetizing fields) naturally found 
in magnetic samples; this effect is known as inhomogeneous broadening. Electric 
quadrupole interactions also contribute to the line width.

4. Effects of Spin Waves. Contrary to what occurs in nonmagnetically 
ordered matrices, where under an external magnetic field one observes the

Frequency (MHz)
Figure 8.1 NMR spectra of the amorphous alloy Fe86B14 at 4.2 K: (a) as-quenched, and 
(/?) annealed at 420°C (for 40 min). The spectra show 11B resonances; a 57Fe resonance 
appears near 47 MHz in the spectrum of the annealed alloy. [Reprinted from Y. D. Zhang, J. I. 
Budnick, J. C. Ford, and W. A. Hines, J. Mag. Mag. Mat. 100, 31 (1991), with permission from 
Elsevier North-Holland, NY.]
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precession in phase of the atomic magnetic moments (uniform mode), in 
magnetic materials we have spatially nonuniform oscillations: the spin waves.

Two nuclei, coupled to the magnetic moments of the corresponding atoms via 
the hyperfine interaction, may couple to one another through the spin waves. In 
the language of quantum mechanics, this indirect interaction is due to the virtual 
emission and absorption of magnons. This indirect process represents an 
additional contribution to the nuclear magnetic relaxation, and is observed 
only in magnetically ordered materials (the Suhl-Nakamura effect). Other 
effects, including a shift in the nuclear resonance frequency (dynamic frequency 
shift, or frequency pulling), can be explained in terms of spin wave interactions.

8.1.1 NMR Studies of Magnetically Ordered Solids

The NMR technique has been applied to the study of many magnetically ordered 
matrices. The large number of NMR nuclides and the possibility of probing the 
atomic environment in an atomic scale has stimulated many investigations in 
magnetism. This is illustrated in the zero-field NMR spectra of Figs. 8.1-8.3; in 
every case graphs show intensity of the NMR signal versus frequency. Figure 8.1 
shows the NMR spectrum of an amorphous alloy of FeB. Figure 8.2 depicts a 
147Sm NMR spectrum of Sm2Fe17 at 4.2 K showing the electric quadrupole split 
septet, since for 147Sm I = Finally, Fig. 8.3 shows a 59Co spectrum of Co/Cu 
multilayers; there are seven lines identified in the spectrum, each one corresponding 
to a specific environment of the Co atoms. The main line appears at a frequency 
close to that of bulk fee Co (217 MHz); the small shift is due to strain in the film.

Figure 8.2 147Sm NMR spin echo spectrum at 4.2 K of the rhombohedral intermetallic compound 
Sm2Fe17. [Reprinted with permission from Cz. Kapusta, J. S. Lord, G. K. Tomka, P. C. Riedl, and 
K. H. J. Buschow, J. AppL Phys. 79,4599 (1996). Copyright © 1996, American Institute of Physics.]



230 MAGNETIC RESONANCE IN MAGNETIC MATERIALS

Figure 8.3 59Co NMR spectrum of a Co/Cu multilayer [40 x(12.3 A Co + 42 A Cu)] at 1.4 K 
showing the lines corresponding to the different atomic environments of the Co atoms. The more 
intense line comes from fee Co in the interior of the film; its frequency is slightly shifted from that of 
bulk Co (217 MHz) as a result of strain. [Reprinted from H. A. M. de Gronckel et al., Phys. Rev. B44, 
911 (1991).]

Some values of magnetic hyperfine fields measured by NMR in magnetically 
ordered metals and intermetallic compounds are given in Table 8.1.

8.2 RESONANCE IN A COUPLED TWO-SPIN SYSTEM

Under the action of a radiofrequency field, magnetically ordered matrices may 
exhibit the phenomenon of magnetic resonance, with the participation of two 
magnetic species: the magnetic ions and the atomic nuclei. These species interact 
through the hyperfine interaction. NMR in magnetically ordered matrices can 
thus be described in a simple fashion by a system of coupled Bloch equations; 
each equation describes the motion of one type of magnetic moment. If the 
magnetizations of these two magnetic species, nuclear and ionic are, respectively, 
m and M, we will have, in the laboratory system

dm—- = 7„m x b + r 
dt

(8.1a)
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Table 8.I NMR frequencies and hyperfine fields Bhf of some nuclides in different 
magnetically ordered matrices, measured at low temperature

Nuclide Matrix
Frequency 

(MHz)
#hf
(T)

Temperature
(K)

nB« Fe2B 40.2 2.94 4.2
55 Mn’ YMn2 118.0, 130.0 11.24; 12.38 4.2

GdMn2 13.6 12.9 4.2
57Fec Fe metal 46.67 33.93 4.2
57 Fe” YFe2 29.36 21.34 4.2
57 Fe7 GdFe2 31.55, 33.46, 35.50 22.94; 24.33; 25.81 4.2
59Coc fee Co — 21.73 0
59cv hep Co — 22.80 0
59Co7 GdCo2 61.6 6.13 4.2
61 NF Ni metal 28.46 7.491 4.2
61 NF NiFe3 63.5 16.7 1.4
89 y* YFe2 45.94 22.02 4.2
89y* YCo5 — 10.17 4.2
143 Nd” NdAl2 786 339 1.4
l47Smfc SmCo2 — 318.8 1.4
l47Sn? SmFe2 — 304.2 1.4
l47Sme Sm2Fe17 568.3 323.3 4.2
155Gdc Gd metal 30.7 23.5 4.2
155Gd7 GdFe2 56.64 43.33 4.2
i59Tbr Tb metal 3120 307.9 4.2
163DyC Dy metal 1163 572.9 1.4
163 Dy6 DyAl2 1183.5 583.00 1.4
l6W Ho metal 6467 726.5 4.2
165 Ho4’ HoFe2 6933 778.9 1.4

Ho] Gd99Fe2 7015 788.1 1.4
167eZ Er metal 913 748 4.2

General note: The values of have been calculated from the resonance frequencies, using the factors
7/2tt from Dormann (1991).
flZhang et al. (1991);
^Dormann (1991);
cWeisman et al. (1973);
^Tribuzy and Guimaraes (1977);
eKapusta (1996);
^McCausland and Mackenzie (1979);
g Guimaraes (1971).

r/M _ n n—— = 7eM x B + R 
dt

(8.1b)

where r and R are the corresponding relaxation terms, b and B are the magnetic 
fields acting on each of the two species, and yn and ye are the respective 
gyromagnetic ratios.
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Solving this system of differential equations, we may obtain the transverse 
magnetization, and from it the transverse susceptibility measured in a magnetic 
resonance experiment. We may also show that the coupling of the two resonant 
systems leads to an enhancement, or amplification, of the applied radiofrequency 
field (e.g., Turov and Petrov 1972).

For this purpose we will assume that in equilibrium we have m(/) = moelcvt and 
M(/) = Mocz"'z, and also consider the magnetic fields acting on the nuclei and 
ions given within the molecular field approximation (see Section 2.6) by

+ (8.2a)

B = Bo + Ba + Bre^ + Awm (8.2b)

where

Ba = anisotropy field acting on the ions (in the z direction)
Bo = external field (in the z direction)
Xm = molecular field parameter
Bi = circularly polarized rf field.

The molecular field felt by the nuclei is identified to the magnetic hyperfine field:

Bhf = AmM (8.3)

We are not considering demagnetizing fields that would contribute to B. The 
magnetizations in the x-y plane can be written

M± = Mx ± iMy (8.4a)

m± = mx ± imy (8.4b)

The components of the magnetic field are

B± = B1± + Amm± (8.5a)

b± - B1± + AmM± (8.5b)

Bz — Bq + Ba + Amrn (8.5c)

bz = Bq + XmM (8.5d)

where we have taken mz «m and Mz «M (the equilibrium values of 
the magnetizations). Although the nuclear magnetization is normally far from 
saturation, this approximation can be justified (see de Gennes 1963). In the 
stationary regime, M± = M+(0)e"z and m± = m±(0)ezwZ; taking this into 
the system of equations (8.1), neglecting the relaxation terms, and the terms 



RESONANCE IN A COUPLED TWO-SPIN SYSTEM 233

in Bi±, we get:

+ [±w + 7„(5o + = 0 (8.6a)

[±Ld + ye(Bo + Ba + Xmm)]M±-yeBhfm±^O (8.6b)

The solutions (the normal modes cjz) of this system of equations are given by 
equating the determinant of the coefficients to zero:

± Cl?2 ± + Bhf) + 7e(^0 + Ba + \nm)]

+ 7«7e(^o + Ba + + Bhf) - 7«7eAmmBhf = 0 (8.7)

The roots are given using the approximation (a2 — e)1/2 « a - e/2a, where we 
have taken the term c = 47„7eXmmB^ smaller than the other contributions. We 
also take into account that ujc = 7e(B0 4- Ba) — 7«(^o + ^hf)-

The first solution is the nuclear resonance frequency:

= N = |-7„[A) + Shf(l -»7^)]| (8.8)

where the quantity 77, known as the enhancement factor, or amplification factor, is 
given by

This result shows that the nuclear resonance frequency is shifted from the 
value ujn = 7„(B0 + Bhf) by a term proportional to the ratio of the nuclear 
magnetization to the atomic magnetization (in equilibrium); this is normally a 
very small contribution.

The shift in NMR frequency is given by (for Bo = 0)

m
(8.10)

and this effect is known as the dynamic frequency shift or “frequency pulling” (see 
de Gennes 1963), and in the extreme cases where it is significant, the NMR 
frequency is not a direct measure of the hyperfine field. This occurs at very low 
temperatures, since this shift is proportional to the nuclear magnetization m, 
which is proportional to 1/T; also, it is most relevant for 100% abundant nuclei 
(large m). Since m is dependent on rf power, the nuclear resonance frequency Q.n 
in the presence of dynamic shift will also show a small power dependence. As an 
example of large dynamic shift, the NMR in a Mn2+ ion shows 8uj/uj = 
3 x io-3/r.
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The other root of Eq. (8.7) is the electronic resonance frequency:

— ^2 — |~7e(^0 + ^a) Af) | (8.H)

This is the frequency of magnetic resonance of the atomic moments in a 
ferromagnetically ordered material; it is the ferromagnetic resonance (FMR) 
frequency. It also shows a small displacement from we = 7e(B0 + Ba), propor­
tional to the ratio m/M of the magnetizations.

We now proceed to obtain the expression of the transverse magnetization. We 
rewrite the equations for M± and m±, this time including the rf field B1±:

-7„AmrnAf± + [±cj + 7„(S0 + 5hf)]™± - = 0 (8.12a)

[±<v + 7e(S0 + Ba + - -yeBh{m± - 'leMB]± = 0 (8.12b)

The expression for M± [from Eq. (8.12b)] is

— 7e(Aifm± + ~ Aifm± + B\±M
± + 7e(A) + ^0 + (8.13)

where we have neglected Xmm in comparison with BQ + Ba, and cj in comparison 
with ue = 7e(B0 + Ba); the latter approximation is justified since we are looking 
for the transverse magnetization near the nuclear resonance frequency which 
is much smaller than we.

Substituting into Eq. (8.12a), we obtain

7«7e^l±(^0 + + ^hf)m, =------------------------------------------------------------------------------------------------------
7«[=l=^ T yn(BQ + j?hf)][dzCJ + 7e(^0 “b ^a)] — 7«7e^m^^hf

(8-14)

z. , x %Bi±m 
m^ = i, + "l±^ + si. (8.15)

with given by Eq. (8.8). Taking the negative sign in ±cj, we obtain

Z1 , ^nB\±m m±= (jj \ln
(8.16)

The transverse susceptibility of the nuclei becomes

Xm ^Bx± +??\w-Q„) (8-17)
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where /z0 is the vacuum permeability. With the static nuclear susceptibility 
defined by [see Eq. (7.43)]:

Xn = ^-^- (8.18)

and using the nuclear resonance frequency in the applied magnetic
field, we finally obtain

*£ = -(1+77), \.Xn (8.19)
(cj - QJ

We can see from this equation that the transverse susceptibility of the nuclei in a 
ferromagnet appears augmented by a factor (1 4- 77), compared to its expression 
in a nonmagnetic matrix. This susceptibility presents a maximum for the 
frequency uj = Qn.

Substituting m± [Eq. (8.14)] into the expression of [Eq. (8.13)], one 
obtains:

M =_______ 7eMBi±________ ! y„mBh[(B0 + Ba + 7?hf)
[±w + 7e(fio + + Amm)] [±w + 7e(50 + + ^mm)](Bo + Ba)

(8.20)

Dividing by B1±, and making some simplifications, one obtains

Xm =Xe -77(1 +7?) 7. X» (8-21)

where xe = /(Bo 4- Ba) is the electronic static susceptibility, a term that is 
independent of frequency.

The total transverse susceptibility for the system at frequency u is the sum of 
the nuclear term and the electronic (or ionic) term:

x(^) — Xm + Xm (8.22)

and is given by

= -(l+ 77)2 7-^X„ (8.23)

From this equation one may see that the total response (electronic plus nuclear) 
to the transverse field contains a multiplicative factor (1 4- ??)2. It is interesting to 
note that this total susceptibility is (1 4- 77) ~ 77 times larger than the enhanced 
nuclear susceptibility [Eq. (8.19)] (apart from a constant term). This means that 
the largest contribution to the total transverse susceptibility arises from the ions, 
even for a frequency near the nuclear resonance frequency (u> « Q„).
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The absorbed power may be calculated writing the total susceptibility under 
complex form [Eq. (7.49)]:

/ • //
X = X -IX (8.24)

To identify x and x" in this case, we go back to the coupled Bloch equations 
[Eqs. (8.1)] and substitute m and M by m(/) = moezw/ and M(/) = Moew/, this 
time including in an imaginary part, which leads to exponential decay, or 
exponential relaxation of the magnetizations. This is equivalent to the substitu­
tion of the nuclear magnetic frequency in the total field (Q„) by a complex 
expression:

+ zTw (8.25)

where T„ is the nuclear relaxation term, equal to the half width of the line (in the 
frequency spectrum). Substituting into Eq. (8.23), it follows that

= +(l+b)V»M (8.26)

x"H = (i + ??)2x"H (8.27)

with

, o \2 , r2 (8.28)

and

H ( \ _ ^0^/7

— z n \2 I (8.29)

The power absorbed by the spin system is given as a function of the imaginary 
part of the susceptibility x'(sv) by Eq. (7.56) (see Section 7.3):

p = (8.30)

Substituting we have

(8.31)

In conclusion, the absorbed power is proportional to the (nonenhanced) nuclear 
susceptibility, to the frequency, and to the square of r]Bx; this last quantity is in fact, 
the effective rf field B2 acting on the nucleus in the ferromagnet:

= r]Bx (8.32)
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And the absorbed power is then given by

(8.33)

In this derivation the relaxation term of the atomic moment (Te) was not 
taken into account. Its inclusion leads to the appearance in the absorbed power 
of an additional contribution proportional to the electronic term x^(cj), and to 
the nuclear dispersive term x«(^) (e-g-> Narath 1967).

8.3 NMR ENHANCEMENT FACTOR : DOMAINS AND DOMAIN WALLS

As we have shown, when an rf field of intensity Bj is applied to a sample of 
magnetic material, the nuclei feel a field augmented by 77, a quantity known as the 
NMR enhancement factor, or amplification factor.

The expression for the enhancement factor given in the preceding section 
[Eq. (8.9)] is applicable to domains. This quantity has different values in domains 
and in the domain walls; in domains it measures from 1 to 100, and in the domain 
walls it is of the order of 103 - 105. Table 8. II shows values of some enhancement 
factors 77 observed experimentally.

It is easy to obtain the expression of the domain enhancement factor [Eq. (8.9)] 
from geometric arguments (Fig. 8.4). Assuming that inside the domains the atomic 
magnetic moments feel an anisotropy field Ba along the z direction, a perpendicular 
rf field Bx displaces the magnetization from its equilibrium position. The appear­
ance of a perpendicular component of the atomic moment leads to a hyperfine field 
component in the same direction of since the hyperfine field is approximately 
proportional to M. From Fig. 8.4, one can see that

= (8 34)
Si Ba Ba ' ’

Which is the expression of the enhancement factor in the domains

(8.35)
^hf

Table 8.11 Values of the enhancement factor 77 measured in some metallic matrices

Nucleus Matrix Location Temperature (K) P

57Fe Fe Wall center 4.2 6 100 (300)
57Fe Fe Wall center 295 25 000 (2000)
61 Ni Ni Wall center 1.3 4 000 (500)
61 Ni Ni Crystal average = 300 1 600-43 000

Source: Reprinted from Landolt-Bornstein, Magnetic Properties of 3d Elements, New Series 111119a, 
Springer-Verlag, New York, 1986, with permission.
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Figure 8.4 Amplification mechanism of the rf field B} inside a domain; the magnetic moment is 
turned by an angle 0, and the transverse component of the applied field becomes B^f, much larger 
than .

In the presence of an external field Bo, also parallel to z, the enhancement factor 
is reduced, and measures [Eq. (8.9)]:

Aif

% Ba + Bo (8.36)

The nuclei at the domain wall edge (DWE) normally have enhancement 
factors larger than in the domains.

Inside a domain wall, the field Bx is amplified by the factor rjw, usually much 
larger than rjd. This amplification effect can be understood as follows. The field
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Figure 8.5 Enhancement in the domain walls: the rf field displaces the wall, and the magnetic 
moments M of the atoms turn, leading to the appearance of large transverse components of the 
hyperfine fields (oc AM) acting on the nuclei.

displaces the wall, favoring the growth of the domains with direction of 
magnetization close to the direction of Bx (see Sections 5.4 and 5.5). This 
displacement induces a rotation of the magnetization inside the wall, which 
leads to the appearance of components of the hyperfine field along Bx, which add 
to this rf field—this is the mechanism of enhancement in the walls (Fig. 8.5). This 
enhancement depends on the position x inside the domain wall; for the nuclei at 
the domain wall center (DWC) (Fig. 8.6) the factor rjw reaches a maximum. The 
enhancement factor rjw is proportional to the displacement 8x of the wall, for 
small values of 8x.

The domain wall enhancement factor for a domain wall of thickness 8, inside a 
particle of diameter D, demagnetizing factor Nd, saturation magnetization Ms, 
and hyperfine field Bhf is (Portis and Gossard 1960):

T^hf
^Nd8Ms (8.37)

In a pulsed NMR experiment, the nuclear magnetization is turned from the 
equilibrium direction (the z direction) by the application of the radiofrequency 
field By in the xy plane. The angle of rotation of the nuclear magnetization after 
an rf pulse of duration ta is given by (see Section 7.6)

0 = yrjtaBi (8.38)

where 7 is the nuclear gyromagnetic ratio, Bx is the radiofrequency field, and rj is 
the enhancement factor. The power applied to the sample is related to the field Bx
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Figure 8.6 Dependence of the domain wall enhancement factor rjw on x, inside a Bloch wall 
perpendicular to this axis [r]w is given by an expression of the form of Eq. (8.42)].

through the equation [Eq. (8.31)]:

P = cB2 (8.39)

The amplitude of the free induction decay (FID) after a single pulse, and the 
amplitude of the spin echo after a sequence of two pulses (to simplify, of equal 
duration), depend on the angle 0. The amplitude of the free induction decay 
presents an oscillatory dependence with 0 in a nonmagnetic sample. For the same 
pulse duration, a periodic variation versus the rf field intensity Bi is expected. 
The amplitude of the echo is also a periodic function of 0 (or in these samples.

The case we want to discuss here, however, is that of ferromagnetic samples; in 
these, several factors contribute to make the results more complex. In the 
simplest hypothesis, assuming a constant enhancement factor, two pulses of 
equal width ta and rf field Bx perpendicular to the static field B^ the amplitude of 
the echo is given by (Bloom 1955)

E(ta,B\) = Csin(777B1/fl)sin2^y^ (8.40)

which is essentially the result obtained previously [Eq. (7.108)], with the addition 
of the enhancement factor.

The analysis of the problem of formation of spin echoes in magnetic materials 
has been extended to include domain wall enhancement in multidomain samples 
(Stearns 1967). The following factors had to be taken into account in this 
treatment: (1) the distribution of angles 0 between Bx and the directions of 
magnetization of the different domains; (2) the spatial variation of rj inside the 
Bloch walls; (3) the oscillatory motion of these walls (assumed to be of circular 
shape), like drum membranes; and (4) the distribution of the areas of these walls. 
The resulting function derived for the echo amplitude at the resonance frequency
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cj0 is:

p, R x 1 r° [l . 2 faoz sech(x)\ = -m0% / / sin I------ -------- I

x sin[aoz sech(x)]z sech(x) p(z)dz dx (8.41)

where z — (1 — r2)hm cos#, p(z) = |ln2(l/z) for Ap(A) = const.
A — area of a wall
p(A) = probability of finding walls with a given value of the area A
hm — displacement of center of wall, normalized to the maximum 

displacement, which is that of the wall of largest radius
m0 = nuclear magnetization
q0 = maximum angle of rotation m0 after excitation by rf pulses.

The variation of the wall enhancement factor rjw with the position of the nucleus 
inside the wall is described by an even function, with maximum at the center of 
the wall (x = 0); the function

t/(x) = r/0 sech(x)(l - r2)hm (8.42)

was postulated, with r representing the normalized distance of the nucleus from 
the axis of the (circular) wall, varying between 0 and 1.

Figure 8.7 Amplitude of the free induction decay (FID) as a function of the intensity of the rf field 
(B-i) in metallic iron, for two different pulse lengths = 3 /is, and t2 = 1.2 /is); the curves are 
computer fits using the model described in the text. [Reprinted from M. B. Stearns, Phys. Rev. 162, 
496 (1967).]
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The experimental data for the echo amplitudes as a function of rf field, 
obtained with metallic Fe and metallic Ni, fitted well the function (8.41); Fig. 8.7 
shows the data for the FID amplitudes.

In the case of NMR in metallic matrices, the radiofrequency field is 
attenuated, and its intensity inside the sample decays exponentially with the 
depth (the skin effect; see Section 5.6). This phenomenon gives rise to a spatial 
inhomogeneity in the rf field, and as a consequence, a reduction of the effective 
volume of the sample in a magnetic resonance experiment. To minimize this 
problem, metallic samples are usually studied in the form of powders or thin 
foils.

8.4 FERROMAGNETIC RESONANCE

We have shown in Section 8.2 that the coupled system of atomic magnetic 
moments and nuclear magnetic moments found in a ferromagnet has two 
resonant frequencies, the NMR frequency, and the ferromagnetic resonance 
(FMR) frequency. We will derive below the ferromagnetic resonance frequency, 
and discuss the result in more detail, neglecting the influence of the nuclear 
magnetic moments.

Ferromagnetic resonance (FMR) is observed when a sample of ferromagnetic 
material is submitted to an rf field of frequency equal to the precession frequency 
of the atomic moments (or the magnetization M). With the precession of M, the 
demagnetizing fields Hd = —NdM along different directions have to be taken 
into account, and since the demagnetizing factors depend on the shape, the form 
of the sample is important. In the case of an ellipsoidal sample, with principal 
axes coinciding with the coordinate axes, is a diagonal tensor given by

0 0 \
N, = 0 Nyd 0

\ o 0 Nd J
(8.43)

and

— MoNrfM = —/io I 0

\ 0

0 0 \ / Mx\

N}d 0 My 
0 NzJ\mJ

= —/i0(NdMxi + NdMyj + N:dMzk) (8.44)

The total field acting on M is

B — Bo + B(t) + Bd (8.45)

with Bo = 50k, and B(z) = B]^'.
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Neglecting relaxation effects, the motion of M is given by

^ = 7Mx(B0 + B(z)+Brf) (8.46)

One can assume that the magnetization does not deviate much from the 
equilibrium value (the saturation magnetization), that is, M « M5. In the 
stationary regime, MA. = Mx(0)ezu;r, and Mv = Mj;(0)ezu;r. Inserting these expres­
sions into Eq. (8.46), we obtain

iuMx = -y[^MyMz(Nzd - Ny) + MyBQ + MZB{]

iujMy = ~^MxMz(Nxd - Nd) + MxBq + MZB{] (8.47b)

The condition for the existence of solutions for this system of equations is that 
the determinant of the coefficients be equal to zero; for B(r) = Bx — 0, the root of 
the resulting equation is the frequency

-'o = 7{[A) + - Nzd)Ms][B0 + - TV^MJ}1/2 (8.48)

where Mz « Ms.
This is the frequency of precession of the magnetization; the individual 

magnetic moments precess in phase, and therefore cj0 *s called the uniform 
mode precession frequency. For a spherical sample, the demagnetizing factors 
are Nd = Nyd = Nd = |, and the resonance frequency simplifies to

= 7A (8.49)

For a sample in the form of a thin film, in the plane xy, Nd = Nd = 0 and 
Nd = 1, and we have

= 7(A) - MoMs) (8-50)

In real magnetic materials one has in general to consider other sources of 
magnetic anisotropy, especially crystalline anisotropy. Magnetic anisotropy can 
be described in the simplest approximation through the use of an anisotropy 
field Ba = p,QHa\ for axial anisotropy of crystalline origin, Ba — 2KX/M 
(Section 5.2.2). Introducing this field applied along the z direction, one has

B — Bo + B(z) + B^/ + B^ (8.51)

In the case of a spherical sample, and when Bv — 0, it follows:

^0 — 7(A) + ^a) (8.52)
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From this result one can conclude that ferromagnetic resonance can be observed 
even in the absence of an external magnetic field (i.e., with Bo = 0). Equation 
(8.52) shows that the FMR frequency in this case is proportional to the 
magnitude of the anisotropy field Ba\

(8.53)

For the more general case of crystalline anisotropy, not necessarily axial, it is 
convenient to write the anisotropy field as = N^M, with the anisotropy 
tensor. For example, for a spherical sample of a cubic crystal, with Bo along the 
[111] direction (see Chapter 5), it can be shown that

R -r _ „ (12^+4^) (8.54)

and from B^, one obtains

[ (12^1+4^)1
^o-7^o 9Ms ] (8.55)

The magnetic susceptibility of a ferromagnet under an applied rf field can be 
obtained from M(z) = x where x is the magnetic susceptibility tensor. 
To obtain x, we have to solve Eqs. (8.47) for Mx and My.

For an isotropic sample (i.e., B^ = 0), the susceptibility is given by

/ Xu X12 0\
X = 1X21 X22 0

\ 0 0 0 /
(8.56)

with components

72Ms(B0 - fi0NdMs + n0N>dMs)
X11 2 2CJq — CJ

iyx)Ms
X12 — X21 — 2 2CJq — CJ

_ ~ l^NzdMs +
X22 — 2 2cJq — ar

(8.57a)

(8.57b)

(8.57c)

where cj0 is as given by Eq. (8.55). Note that x is the extrinsic susceptibility, so 
called since it measures the response of the magnetic sample to the external rf 
field B(Z); if one had used the time-dependent field inside the sample, it would 
have led to the intrinsic susceptibility.
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The magnetic response of a sample to the rf field B(z) can alternatively be 
described through the relative permeability tensor /i (we have dropped the 
subscript r to simplify) which connects B(/) and H(/): B(/) = H(z). This is
done using the relation /i = I + x, where I is the identity matrix, or the 
equivalent relations:

Mil = 1 + X11

M12 X12 ~M21

M22 = 1 + X22

(8.58a)

(8.58b)

(8.58c)

The motion of the magnetization in a ferromagnet, and the phenomenon of 
ferromagnetic resonance in the presence of magnetic relaxation can be described 
with a phenomenological equation due to Gilbert:

MM M MM—— = 7M x B + - x ——
dt \M\ dt

(8.59)

The solutions of Gilbert’s equation for isotropic media and spherical samples 
can be shown to be (e.g., Morrish 1965)

^Ms (7^0 + iaw)
X11 = X22 = - — (8.60a)

iyujMs 
X12 = -X21 = 2 (8.60b)

Since in this case there is relaxation, or damping, all the matrix elements of the 
magnetic susceptibility tensor are complex. Another description of FMR is due 
to Landau and Lifshitz; the two forms are equivalent. Landau and Lifshitz’s 
equation is

= 7M X B - Mm x (M x B) 
dt M~ ! (8.61)

Since ferromagnetic resonance phenomena occur in strongly coupled magnetic 
systems, the relaxation or damping term has an important contribution arising 
from spin waves. In conducting media, eddy currents are also important.

In the preceding discussion we have assumed that the external magnetic field is 
sufficient to saturate the ferromagnetic sample; if this condition is not satisfied, the 
samples are multidomain and the description of FMR becomes more complex.

Magnetic resonance is also observed in antiferromagnetic and ferrimagnetic 
materials. In antiferromagnets the resonance is called antiferromagnetic reso­
nance (AFMR). It can easily be described along the same lines of the FMR
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phenomenon, assuming two sublattices with magnetizations Mi and M2, with 
M — = |M2|. The exchange coupling between the sublattices is described
through a molecular field of modulus Bm — XM, acting on either sublattice. The 
AFMR frequency is equal to

^=^[Ba(Ba + 2Bm)]x'2 (8.62)

In the usual situation where the mean field Bm is much larger than the anisotropy 
field Ba, one has

= 7(2SaB„,)l/2 (8.63)
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EXERCISES

8.1 Fourier Spectrum of a Rectangular Pulse. Let a pulse Bj(t) be given by

if \t\ < T/2 
[0 if \t\ > T/2

Compute the Fourier spectrum of the pulse, and show that the power is 
concentrated in the frequency range - \/T and 1 /T. Make an estimate of 
this frequency band for T = 10 /zs.



248 MAGNETIC RESONANCE IN MAGNETIC MATERIALS

8.2 Enhancement Factor inside a Bloch Wall, Consider a grain of a ferro­
magnet of volume V composed of two ferromagnetic domains, separated 
by a 180° Bloch wall of width W and area A, Let Ms be the saturation 
magnetization in each domain. Assume that an rf field B| is applied along 
the plane of the wall in the direction parallel to the direction of magnetiza­
tion of the domains.

(a) Show that the increase in the magnetization of the grain caused by the 
rf field is:

8MX =
fix

V

where fix is the instantaneous displacement of the wall in the direction 
perpendicular to the field Bp

(b) Given the electronic susceptibility to the rf field defined by

6MX = —Bx 
Mo

show that fix is given by

6x = fe Bx
2A^MS

(c) Let 0{x) be the angle that the magnetization at point x inside the wall 
makes with the direction of magnetization of the domains. An ion in 
this position will have its magnetic moment turned by Bj through an 
angle of the order of

fiffx) =
\dx J

Show that the rf field at the nucleus in this position of the wall will be 

vXe (de\

where 2?hf is the hyperfine field, that has the direction of the local 
magnetization in the wall.

(d) Compute the enhancement factor r]{x) = Bfi/Bx inside the wall for the 
case in which 0(x) = tg~\x/W).

8.3 Inhomogeneous Width of the NMR Line. Consider an rf pulse of duration 
tp and amplitude Bri. The angle 0p through which the nuclear magnetization 
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is rotated by the pulse is given by 0p = ^nB\Tp. Assuming that the spin-spin 
relaxation may be neglected during the application of the pulse, show that 
for a 0p — tt/2 pulse we will have the relation B\ 1/(7„T2). Substitute 
typical values for yn and T2 in metals in this expression, and estimate the 
value of Bi necessary to turn the nuclear spins of tt/2. In the presence of an 
inhomogeneous linewidth of the order of 5 MHz, what would be the 
equivalent value of B{ required to excite all the spins? Comment on your 
answer.
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TABLE OF NMR NUCLIDES

Nuclide Spin

Natural 
Abundance 

(%)

Quadrupole 
Moment 
(io-21Wj

Sensitivity" NMR Frequency 
(MHz) at a Field 

of 2.3488 TRelative Absolute

*H i
2 99.98 —- 1.00 1.00 100.000

2H 1 1.5 x 1(T2 2.73 x 10’3 9.65 x 10"3 1.45 x 10"6 15.351

3h 1 
2 0 — 1.21 0 106.663

3He 1 
2 1.3 x 1(T4 — 0.44 5.75 x 10"7 76.178

6Li 1 7.42 -8.0 x 10"4 8.50 x 10"3 6.31 x 10"4 14.716
7 Li 3

2 92.58 -4.5 x 10“2 0.29 0.27 38.863
9Be 3

2 100 5.2 x 10~2 1.39 x 10"2 1.39 x 10"2 14.053
10B 3 19.58 7.4 x 10“2 1.99 x kf2 3.90 x 10"3 10.746
"B 3

2 80.42 3.55 x 10“2 0.17 0.13 32.084
13C 1

2 1.108 — 1.59 x 10'2 1.76 x 10’4 25.144
l4N 1 99.63 1.6 x IO’2 1.01 x 10’3 1.01 x 10“3 7.224

15n 1
2 0.37 — 1.04 x 10’3 3.85 x 10’6 10.133

17o 5
2 3.7 x 10“2 -2.6 x 10“2 2.9 x IO-2 1.08 x 10“5 13.557

19f 1
2 100 — 0.83 0.83 94.077

21Ne 3
2 0.257 9.0 x IO-2 2.50 x IO-3 6.43 x KF6 7.894

23Na 3
2 100 0.12 9.25 x 10“2 9.25 x 10’2 26.451

25Mg 5
2 10.13 0.22 2.67 x 10“3 2.71 x 10“4 6.1195

27 Al 5
2 100 0.149 0.21 0.21 26.057

251
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Nuclide Spin

Natural 
Abundance 

(%)

Quadrupole 
Moment 
(10“28m2)

Sensitivity"

Relative Absolute

NMR Frequency 
(MHz) at a Field 

of 2.3488 T

29Si i 
2 4.7 — 7.84 x 10’3 3.69 x 10"4 19.865

31p 1 
2 100 — 6.63 x IO"2 6.63 x 10"2 40.481

33s 3
2 0.76 -5.5 x IO’2 2.26 x 10“3 1.72 x 10“5 7.670

35C1 3
2 75.53 -8.0 x 10“2 4.70 x 10’3 3.55 x 10’3 9.798

37C1 3
2 24.47 -6.32 x 10“2 2.71 x 10“3 6.63 x 10’4 8.156

39k 3
2 93.1 5.5 x IO'2 5.08 x 10’4 4.73 x 10’4 4.667

41k 3
2 6.88 6.7 x 10’2 8.40 x 10“5 5.78 x 10“6 2.561

43Ca 7
2 0.145 -0.05 6.40 x 10“3 9.28 x 10'6 6.728

45Sc 7
2 100 -0.22 0.30 0.30 24.290

47Ti 5
2 7.28 0.29 2.09 x 10’3 1.52 x 10"4 5.637

49Ti 7
2 5.51 0.24 3.76 x IO-3 2.07 x 10“4 5.638

5°y 6 0.24 ±0.21 5.55 x 10’2 1.33 x 10’4 9.970
5'V 7

2 99.76 -5.2 x 10’2 0.38 0.38 26.289
53 Cr 3

2 9.55 ±3.0 x 10’2 9.03 x 10“4 8.62 x 10“3 5.652
55 Mn 5

2 100 0.55 0.18 0.18 24.664
57Fe 1 

2 2.19 — 3.37 x IO-5 7.38 x 10"7 3.231
59 Co 7

2 100 0.40 0.28 0.28 23.614
61 Ni 3

2 1.19 0.16 3.57 x IO-3 4.25 x 10“5 8.936
63 Cu 3

2 69.09 -0.211 9.31 x 10“2 6.43 x 10"2 26.505
65 Cu 3

2 30.91 -0.195 0.11 3.52 x 10“2 28.394
67Zn 5

2 4.11 0.15 2.85 x 10"3 1.17 x 10'4 6.254
69Ga 3

2 60.4 0.178 6.91 x 10“2 4.17 x 10“2 24.003
71 Ga 3

2 39.6 0.112 0.14 5.62 x 10“2 30.495
73Ge 9

2 7.76 -0.2 1.4x IO'3 1.08 x IO'4 3.488
75 As 3

2 100 0.3 2.51 x 10“2 2.51 x 10“2 17.126
77Se 1 

2 7.58 — 6.93 x 10’3 5.25 x 10'4 19.067
79Br 3

2 50.54 0.33 7.86 x 10“2 3.97 x 10“2 25.053
81Br 3

2 49.46 0.28 9.85 x 10'2 4.87 x 10“2 27.006
83Kr 9

2 11.55 0.15 1.88 x 10’3 2.17 x 10'4 3.847
85Rb 5

2 72.15 0.25 1.05 x 10"2 7.57 x 10“3 9.655
87 Rb 3

2 27.85 0.12 0.17 4.87 x 10“2 32.721
87Sr 9

2 7.02 0.36 2.69 x 10“3 1.88 x 10“4 4.333
89y 1

2 100 — 1.18 x 10 4 1.18 x 10“4 4.899
91Zr 5

2 11.23 -0.21 9.48 x 10"3 1.06 x IO’3 9.330
93Nb 9

2 100 -0.2 0.48 0.48 24.442
”Mo 5

2 15.72 ±0.12 3.23 x 10“3 5.07 x 10"4 6.514
”Mo 5

2 9.46 ±1.1 3.43 x 10’3 3.24 x 10"4 6.652
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Nuclide Spin

Natural 
Abundance 

(%)

Quadrupole 
Moment 
(10"28m2)

Sensitivity0 NMR Frequency 
(MHz) at a Field 

of 2.3488 TRelative Absolute

"Ru 3
2 12.72 -0.19 1.95 x IO’4 2.48 x IO-5 3.389

101 Ru 5
2 17.07 7.6 x 10“2 1.41 x 10“3 2.40 x IO"4 4.941

103 Rh 1
2 100 — 3.11 x 10“5 3.11 x IO"5 3.147

105Pd 5
2 22.23 -0.8 1.12 x IO 3 2.49 x IO-4 4.576

107 Ag 1
2 51.82 — 6.62 x 10“5 3.43 x 10“5 4.046

109 Ag 1
2 48.18 — 1.01 x IO-4 4.86 x IO"5 4.652

"'Cd 1
2 12.75 — 9.54 x 10"3 1.21 x IO"3 21.205

113Cd 1
2 12.26 — 1.09 x IO2 1.33 x 10"3 22.182

113In 9
2 4.28 1.14 0.34 1.47 x 10“2 21.866

115In 9
2 95.72 0.83 0.34 0.33 21.914

115Sn 1
2 0.35 — 3.5 x 10"2 1.22 x 10“4 32.699

117Sn 1
2 7.61 — 4.52 x 10"2 3.44 x 10“3 35.625

ll9Sn 1
2 8.58 — 5.18 x IO’2 4.44 x 10“3 37.272

121Sb 5
2 57.25 -0.53 0.16 9.16 x 10"2 23.930

123Sb 7
2 42.75 -0.68 4.57 x 10"2 1.95 x IO’2 12.959

123Te 1
2 0.87 — 1.80 x 10’2 1.56 x IO"4 26.207

125Te 1
2 6.99 — 3.15 x 10“2 2.20 x IO’3 31.596

127 j 5
2 100 -0.79 9.34 x 10“2 9.34 x IO’2 20.007

I29Xe 1
2 26.44 — 2.12 x IO-2 5.60 x IO’3 27.660

131Xe 3
2 21.18 -0.12 2.76 x 10"3 5.84 x IO-4 8.199

133Cs 7
2 100 -3.0 x 10“3 4.74 x 10”2 4.74 x 10"2 13.117

135Ba 3
2 6.59 0.18 4.90 x 10"3 3.22 x 10"4 9.934

137Ba 3
2 11.32 0.28 6.86 x IO-3 7.76 x 10"4 11.113

138La 5 0.089 -0.47 9.19 x 10“2 8.18 x IO"5 13.193
139La 7

2 99.91 0.21 5.92 x IO-2 5.91 x IO-2 14.126
141 Pr 5

2 100 — 5.9 x 10-2 0.29 0.29 29.291
143 Nd 7

2 12.17 -0.48 3.38 x 10"3 4.11 x 10“4 5.437
145Nd 7

2 8.3 -0.25 7.86 x IO-4 6.52 x IO"5 3.345
147 Sm 7

2 14.97 -0.21 1.48 x IO’3 2.21 x IO-4 4.128
l49Sm 7

2 13.83 6.0 x 10“2 JAI x 10"4 1.03 x 10"4 3.289
151 Eu 5

2 47.82 1.16 0.18 8.5 x IO-2 24.801

153Eu 5
2 52.18 2.9 1.52 x IO’2 7.98 x IO’3 10.951

l55Gd 3
2 14.73 1.6 2.79 x IO-4 4.11 x IO-5 3.819

l57Gd 3
2 15.68 2.0 5.44 x IO’4 8.53 x IO-5 4.774

159Tb 3
2 100 1.3 5.83 x IO-2 5.83 x IO-2 22.678

161 Dy 5
2 18.88 1.4 4.17 x IO’4 7.87 x IO-5 3.294

163 Dy 5
2 24.97 1.6 1.12 x 10“3 2.79 x 10"4 4.583
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Nuclide Spin

Natural 
Abundance 

(%)

Quadrupole 
Moment 
(10-28m2)

Sensitivity" NMR Frequency 
(MHz) at a Field 

of 2.3488 TRelative Absolute

165Ho 7
2 100 2.82 0.18 0.18 20.513

167Er 7
2 22.94 2.83 5.07 x IO-4 1.16 x 10“4 2.890

169Tm 1
2 100 — 5.66 x 10~4 5.66 x 10"4 8.271

171Yb 1
2 14.31 — 5.46 x 10“3 7.81 x 10“4 17.613

l73Yb 5
2 16.13 2.8 1.33 x IO-3 2.14 x IO-4 4.852

174Lu 1 — — — — —

175Lu 7
2 97.41 5.68 3.12 x IO-2 3.03 x 10“2 11.407

176Lu 7 2.59 8.1 3.72 x IO-2 9.63 x 10“4 7.928
177Hf 7

2 18.5 4.5 6.38 x 10“4 1.18 x IO-4 3.120
l79Hf 9

2 13.75 5.1 2.16 x IO”4 2.97 x IO ’5 1.869
181Ta 7

2 99.98 3.0 3.60 x 10-2 3.60 x IO-2 11.970
l83W 1

2 14.4 — 7.20 x 10“4 1.03 x 10“5 4.161
185Re 5

2 37.07 2.8 0.13 4.93 x IO-2 22.513
187Re 5

2 62.93 2.6 0.13 8.62 x 10’2 22.744
187Os 1

2 1.64 — 1.22 x 10-5 2.00 x 10-7 2.303
189Os 3

2 16.1 0.8 2.34 x 10“3 3.76 x 10“4 7.758
191 Ir 3

2 37.3 1.5 2.53 x 10“5 9.43 x 10“6 1.718
193Ir 3

2 62.7 1.4 3.27 x 10~5 2.05 x IO-5 1.871
]95Pt 1

2 33.8 — 9.94 x 10“3 3.36 x 10“3 21.499
197 Au 3

2 100 0.58 2.51 x 10"5 2.51 x 10-5 1.712
'"Hg 1

2 16.84 — 5.67 x 10“3 9.54 x IO-4 17.827
201 Hg 3

2 13.22 0.5 1.44 x 10"3 1.90 x 10~4 6.599
203Ti 1

2 29.5 — 0.18 5.51 x 10-2 57.149
205Ti 1

2 70.5 — 0.19 0.13 57.708
207Pb 1

2 22.6 — 9.16 x 10"3 2.07 x 10"3 20.921
209Bi 9

2 100 -0.4 0.13 0.13 16.069
235u 7

2 0.72 4.1 1.21 x 10“4 8.71 x 10“7 1.790

Source'. Reprinted from B. C. Gerstein and C. R. Dybowski, Transient Techniques in NMR of Solids: 
An Introduction to Theory and Practice, Academic Press, Orlando, FL, 1985, p. 8-11.
a Relative sensitivity—at constant field for equal numbers of nuclei; Absolute sensitivity—product of 
relative sensitivity and natural abundance.



APPENDIX B
SOLUTIONS TO EXERCISES

CHAPTER 1

1.1 The total energy (dipolar + anisotropy) of the sphere is:

^totai — cos 9 + K sin2 9

Expanding cos 9 and sin2 9 around 9 — tt, we obtain

cos e « -1 +1(0 - tt)2 + O(04) and sin2(0) « (0 - %)2 + C>(03) 

and the total energy becomes

Etotal « -BMS [-1 +1(0 - tt)2] + K{3 - tt)2

Thus, the minimum of E around tt will be

dF ? K
— = -BMs(e-Tv) + 2K(e-Tv) =0 or 5 = —Civ Ms

1.2 Consider the gradient of the function xM:

V(xM) = (Vx) • M + xV • M = i • M + xV • M = Mx + xV • M

255
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Integrating this expression in K, one gets

I xV • M dv 
v

• n da —

Multiplying this expression by the unit vector i, we get

/ \MX dv — / (ix)pm dv + (p (ix)M • n da 
Jv Jv Js

Doing the same with j and k and summing the three expressions we obtain, 
with M • n = am

/ (iMx + }My + kM^dv M = / rpm dv + (p ram da 
Jv Jv Js

1.3 The expression of the total magnetic energy for a distribution of dipoles 
with magnetization M is:

E = -1 y M • B dv

In the absence of applied field, B = — /z07VjM = Br/ . Therefore

E = ^-Nd [ M2 dV = ^-NdM2^-R3 
2 Jv 2 5

where R is the radius of the sphere. Writing R — d/2, where d is the 
diameter and using for the demagnetizing factor of the sphere Nd — |, we 
find

E = ^I^M2d3 
JO

1.4 WeuseV B = 0, VxH = 0, andH = -V<F:

B = Mo(H + M)

V B = /zo(V • H + V • M) = /A)(-V2£* + V • M) = 0

For a uniform magnetization, V • M = 0, and we remain with Laplace 
equation V2<h* = 0. Taking as solutions inside the sphere and outside the
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sphere, we have

= ^rcos# + Qr-2cos# and ^(l#) = A2rcos0 + C2r~2cos#

eB\ 1 e2
— I CJ-------------------

meJ 4tt€o mer3

Far from the sphere, we have H = H\ = (2?//z0)/i. Using the boundary 
conditions: Hxe = H2e and BXr = B2r, we finally obtain:

3^3 3
Hint =---------—i = —--- and Bint //H =  ------- -—— B\

M + 2/i0 M/ZA) + 2 1 +2/z0//i

Since /z//z0 > 1, 7/int < H and 2?int > B.

CHAPTER 2

2.1 The Lorentz force (in the SI) acting on the electron is:

1 erF = —e(E + v x B), where E = ---- T
v 7 47T€0r3 *

is the electric field derived from a central potential. With B||k we find the 
following system of coupled equations:

_ 1 e x
me ~T + eBvv + ~A----------T 0;

dt y 4tt€0 r3
dVy

me —r - eBvx + dt
1 e2y 

4tt€o r3
= 0

Transforming to polar coordinates

x(t) = rcosajt=>vx(t) = —/id sin#: 

y(t) = rsmut=>vy(t) = red cos#

where cd = dO/dt. Therefore

2 2 •= -rcj cos#; —= -ru sm# dt dt

Substituting into the equations of motion, we obtain the following 
equation of the second degree in cj:

2
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whose solutions are

eB + 1 e2 
4tf60 mer3

with e = 1.6 xlO-19 C; m — 9.1 x 10 31 kg, and taking r ~ IO-10 m and 
B ~ 1 tesla, it follows that eB/2m = 8.8 x IO10 s-1. On the other hand, 
e2/(47F60mr3) = 2.5 x 1032 s-1. Consequently

2eB
2m 4tf6q mr3

and +1/7——~ 1-6 x 1016 s 1
2m y 4tf6q mr

2.2 Starting from the k wavefunction of the electron, we obtain

We have to compute the expectation value of r2, (r2):

In spherical coordinates, we have

1 /»27f /*7f roo
(r2) = —z- / / / r4e-2r/fl° sin# dr dO d(j)

na^Jo Jo Jo

The angular integrals are trivial. For the integration in r, we use

/•oo j4 poo
/ r4e~ardr = / e~ardr

Jo ua Jo

With a — 2/a^ we find 3^o/4 for this integral. Then (r2) = 3«q- Sub­
stituting into Eq. (2.12) we find

X — —
p^nZe1 2

---- aQ 2mP

where aQ = 5.3 x 10 11 m, Z = 1. For 1H, p = 89 kg m 3 and A = 1. As a 
consequence, n ~ 5.3 x 1028 atoms m-3. Thus % ~ —2.6 x 10-6.
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2.3 Saturation magnetization of iron, Ms = 1.7 x 106 A m-1; density of iron, 
p — 7970 kg m-3 and Avogadro constant, NA — 6.025 x 1026 kg-1; atomic 
mass of iron, A = 56. Then, the number of iron atoms per cubic meter will be 
N = 857.5 x 1026 m-3 The magnetic moment per atom is mA — 1.98 x 
10-23 A m2. Dividing by the Bohr magneton (pB = 9.27 x 10-24 J T-1) 
we obtain

mA = 2.14 pB

2.4 Let XAB = XAB = —X be the (antiferromagnetic) average coupling para­
meter between the sublattices A and B, and XAA — XBB — Xf, the (ferro­
magnetic) coupling parameter within each sublattice. Then, the total fields 
acting on each sublattice will be

(a) = B - AM# + A'M^; Bb = B - AM^ + A'M#

where B is the applied field.

(b) Using Eq. (2.88), valid for high temperatures, the magnetization of 
each sublattice can be written

and

AM,+A'M«)
T^o

where C is the Curie constant.
We thus obtain the following system of equations for M, and Mfl:

M,
CX CB

+ Tf, Alfi — —

CA ,,——M, +
CBi -

(c) The Neel temperature is that for which the system has solution 
M,,MB^0forB = 0. Therefore the determinant of the coefficients 
has to be zero

CA
Tnpq

2
= o, TN = -(X±Xr) 

Mo
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2.5 The classical partition function is

Z e-itBcos9/kTsinOdO

with

x — cos O.dx — — sin OdO

Z = [+' e^B'kT^dx = - — (e^kT - e+l>ykT)
7-i X

e~^cOse/kT s-m0d0
M — —---------- ------------- “,gh U

&r
[iB-tr =

2.6 The magnetic field B felt by the electron is

/i0 V\ \xdV- —- v x E, where E = -V-- =---- —
4tf \ e J er dr

Therefore

B = -~-(—- vxr 
4tfc \r dr J

But, v — p/2me and p x r = —Til. Therefore

B = Mo h pdv 
47r2me \r dr

The interaction of this field with the electronic spin gives the spin-orbit 
coupling:

7YSO = — 2//^s • B or 7YSO = — ~r~ )s
47f eme \r dr J

Using [iB — —eh/2me, it becomes

^so — Mo
4tf m2e

i^\ ,
--T- S*1 r dr J or ^so = CWs • 1
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2.7 The hamiltonian of the quadrupole interaction (without orthorhombic 
distortion) is:

= EP2O02 = B^(3J2 - J2)

where Jc is the component of J along the c direction of the crystal. If the 
direction of magnetization (z axis) makes an angle 0 with the c axis, the 
relation between the components of J in the two systems of coordinates 
(crystalline and ionic) is:

Jc = Jz cos 0 + Jx sin 0

and then

J2 = cos2 0 + J2 sin2 0 + (JzJx + JXJZ) sin 0 cos 0

Expressing Jx and Jy in terms of the operators J+ and J_ we obtain:

J2 = J2cos2 0 + [J2 + |(J2 + J2_ - 2J_J+ - 2JZ) - J2] sin2 0

+ ^(JZJ+ JZJ- + J +Jz + J-Jz)

Substituting this expression in and computing (JJ\Hqcf\JJ), all the 
nondiagonal terms cancel, remaining only the terms in Jz, Jz and J2:

r 3 j -i
(Hg() = |_3J2 cos2 3 + — sin2 3 - J {J + 1)]

Rearranging the terms, we find

W = *2
/ 1 — 3 cos2 3 \

7 I 2 7(1 - 2J)

-P2(cos#)

Therefore,

(Hqc{) = BP2J(2J- 1)P2(cos0)

2.8 (a) The potential acting at the origin due to 6 charges is:

/ 1 1 1 1 1 1 \
4tf60 \|r - d| + |r + d| |r - zzj| |r + zzj| |r - 6k| |r + />k| J

For r << b, each term of this expression can be expanded in a power
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series. For example:

1 ~ 1 x r2 3x2
|r ± d| la3 + 2a3 + '

with similar expressions for the other terms. One then finds for the 
potential:

TZ <1(1 1 \ 2 , < 1 1 \ 2V ~ constant 4- -— H - tt r + 3 -y —T z 
47F60 b3J \b3 a3J

that is,

q (1 1 \ ? ?
V = ----- -r---- t I (3z - r ) + constant

4tf60 V*3 a3 J 7

Thus, we may write H — t4(3z2 — r2) with A > 0 (since b < a). Note 
that if the symmetry were cubic (b — a), we would have A = 0.

(b) The wavefunctions p of the electron are

Px — xf (r) — rf(r) sin # cos </> — ^(r) sin # cos rf

Py = yf (r) = rf(r) sin 0 sin (j) = R(f) sin 9 sin <j>

pz = zf (r) = rf (r) cos 9 — Rrf) cos 9

Thus, the interaction energy of one electron in the orbital px in the 
crystal field will be

(Pxrft\Px) = A y* r2\R(rf)\2drr f sin2 0cos2 rf3 cos2 6 — 1)<7Q

The integral in r is simply the expectation value < r2 >. The angular 
integral is

sin2 9 cos2 rf3 cos2 9 - 1 = -~tt

Therefore

(Px\H\Px) = -T5KA(r2') = {Py\^\Py)

For pz, one finds (pz\H\pz) = ^KArf2}. Consequently, the px and py
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levels remain degenerate, while the pz level is “lifted” by a quantity 
A = as shown in Fig. B.l.

(c) With a field applied along the z direction the total hamiltonian becomes 
(considering only the orbital magnetic moment)

H = /l(3z2 - r) + hbBLz

In order to compute the matrix elements of this hamiltonian between 
the states px, py and pz, we need only (px,py,pz\Lz\px,py,pz) and the 
nondiagonal terms of since the diagonal terms have been computed 
in the previous item. However, we may show that Lz has no diagonal 
elements in this representation. For example:

= 7 / xf(r) (XA y^\xf[r)d3r 
i j \ vy oxi

or, in spherical coordinates

/*7T 7*2%
|r/(r)|2(r2dr) / sin3 OdO / sin 0cos (pdtj) — 0 

Jo Jo

The same is found for the other diagonal elements. Outside the 
diagonal, the only nonzero elements are

(py\Lz\Px} = ih = ~(px\Lz\py)
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The hamiltonian matrix then becomes

/ Eq -i/dBB 0
H = ijiBB Eq 0

\ 0 0 Ex

where Eq = -^7r2^(r2) and Ex =

(d) The eigenvalues of this hamiltonian are obtained from the equation:

Eq — 6 0
i[lBB Eq - 6 0

0 0 Ex - 6
= 0

which has the roots

61 — e2 — Eq + ^BB\ — Eq — [1bB

that is, the degeneracy in x and y is lifted by the field, while Ex is not 
altered.

CHAPTER 3

3.1 First part: we need the expression (3.86); second part—as follows:

/zcj = 2JS z - ^cos(k • 6)

For k • 6 small:

hcv « 2JS (2JSa2)k2

U =3.2 AM.B’ ; (2tt)3 J (MkT - 1
w(/c) = Ak2- d3k = ^k2dk
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U = V L /2.------ z- / dk--—^—-----  
(2tt)3 J eMk^/kT _ j

Let y = tiAk1 /kT', then

nk3.3 Af(T) = Af(0)
V f d3k

(2tt)3 J e^kT - 1

At low temperatures, u(k) « (2JSa2)k2 (Exercise 3.1)

d3k 
ehw/kT _ |

47T<-2 dk 
ghAk7-/kT   |

Substituting x = hAk2/kT, dk — \(kT/TiA'^x x^2dx, the integral 
becomes

1/2 -\/i_dx_
X e*-l — constant x T3^2

Thus

M(7)-M(0)_ ,,2
_ — constant x iM(0)

CHAPTER 4

4.1 The susceptibility of the gas is given by

XV ; dH ,
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where M(T) = ~ and «±(T) = f n±(e)f(e)de with/(e) the
Fermi-Dirac distribution and

n±(e) =i«(e±/z55)

For hbB << Ef we may approximate

«±(e) «5«(e)

where /(e) is the first derivative of n in relation to e. With this approxi­
mation we obtain

M(T) = AB I n'^f^de and X(T) = Ab J n{e)f{e)de

To evaluate this integral, we have to make a Sommerfeld expansion 
(e.g., Ashcroft and Mermin 1976):

+oo
n(e)f{e)de « / /(e)rfe + — (AT)2/'^^) OO J—OO t)

where the integral on the right hand side may be written as

M C^F
n(d)de = / /(e)<7e + (/i - EF)n^EF) = n(EF) + Qu - Ep)n(EF)

where // is the chemical potential. Consequently

r 7F2
X(T) « Ab AEf) + A - EF)n'(EF) + -(kT)2n"(EF) 

o

Now, the condition for the conservation of the number of electrons with T 
is (e.g., Ashcroft and Mermin 1976).

——(kT) —

With this, we obtain

x(n«%oO- 6{ 7 \AEf)J \n(EF) J

where %0 = p^n^Ep'). For a gas of free electrons, the density of states may
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be written as

3 n
2~E~F

Therefore

x(r) = xo 1
- 12 Vw

4.2 The total number of electrons with moment up is given by

rEF
n(e + ^B)de

J —pBE

and the energy of these electrons is
rEF

= 5 / e«(e + VB)de
J jiBE

where for the free-electron gas n(e) = Substituting this expression in 
the preceding integrals one finds

Ny=\A(EF + FBB)2E

and

But

Ef + B'bE —
'3NA2E 
~2AJ with ATt=|7V(1+<)

one finds

=£o(1 + C)5/3 ~ENFbB{\+ C)

with Eq = (fyNEF. The computation for is identical, changing only 
c + for c - /ig in the argument of n.
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The total energy E = E + E will then be equal to

£ = £0[(l + C)5/3 + (1 - O5/3] - Ni2BBC

In the limit ( < 1 we may approximate

(1 ± O5/3 « 1 ± |c + |c2

Therefore,

£ ~ £oC2 - N/j,bBC, and £bC - N/j,bB
9 aQ 9

The value of Q for which the derivative is annulled is

= 9 NyBB 
20 Eq

The magnetization will be
2 2

M = - M) — hbNCa = —ZU

and

M = ^B
2. Ep

2 kO ' XniiB- « — and 0 = —;—
3 Ef k

2 _ Q
3

We have to find a relation between n. EF, and n(EF):

n{EF)=-2 ^E(2EFf2 
7TZ fr
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We know that

kF = (37t2h)1/3

then

me (37T277)2/3

F 2Ef

substituting into n[EF), we obtain

zF x 3h 
"<£f ’ = 2Er

replacing above

2-2a^h(Ef) = 0

then

1 -\An<,EF) = 0

4.4 With N- equal to the total number of moments up, the total number of 
pairs of distinct moments up electrons will be equal to

|(7V2 - 7Vt) = - 1) «

since « 1023 > 1. Since each pair of parallel spins interacts with a 
constant exchange energy equal to — V, the total exchange energy will be 
equal to

^exch = = -|PW2(1 + C)2

Adding to the interaction energy the interaction with the field B computed 
in exercise 4.2, we have

E+ = E0(l + C)5/3 - 1PW2(1 + C)2 - + C)
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In the same way we find the energy for the moment down band and the total 
energy will be

E = £0[(l + 05/3 + (1 - O5/3] - |K?V2[( 1 + C)2 + (1 - C)2] - NhbBQ

Computing dE/dC, and taking the limit £ <C 1, we find that the value of £ 
corresponding to the extreme of E, Co, will be

3[iBB
2EF-(3/2')VN

and the magnetization of the gas with exchange interactions will be

2
M = MM - = HbNQ) = ——LlZp ~ 2 V 7V

with the susceptibility given by

dM 
X~~dH

2
37V

2Ef -1 VN

We thus see that for V > 0 the exchange interaction increases the magnetic 
susceptibility of the gas. To ensure that there is spontaneous magnetization 
in the gas (B = 0), the denominator of the expression for M must be zero. 
That is, V = 4Ef/3N. In order to assure stability to such state of 
spontaneous magnetization, the extreme given by Co above must represent 
a minimum of E. For this to occur, we have to impose that its second 
derivative in Co is positive, which implies V < 4EF/3N.

4.5 The number of particles with momentum between k and k + dk is

dN = 2 x —p—dk = n(E)dE

Replacing k2 and dk from E — h2k2/2me, one obtains

V (2me\3/2 1/2 
n(E)dE — —-y —5- E ' dE

2tt2 \ h J
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CHAPTER 5

5.1 The anisotropy energy is written under the form

U — K\ (oj 02 T CE3 T O2O3) T A?2^f^2^3

We know that of + + oj = 1. Therefore

T o| T — 0^1 T c^2 T ^3 T 2(oqQ2 4~ 4- oloj) 1

Thus,

(22 । 2 2. 2 2\ Q1 +O2 + O3(OjO2 + + O2Q3) —--------- -------

which shows that it is not necessary to include the term of the fourth power 
in the expression of U.

5.2
dU^totai — Uel + Uk + Ua and —total = C44ev + i?2Qia2 

O^xy

Therefore

dtAotal n_ . ^2q1q2= 0^e.¥V =-- ---
^44

In the same way one finds

B^OlyCE3 .52^2^3
"xz= 6yz= oT

The diagonal terms are

C^total ( . \id2 a
~ Cll^xx + C12(eyy + ezz) + ~ 0

O^XX

& ^total 
deyy — Clleyy + C12(exx + ezz) + ^14*2 — 0

tOta — C\\ezz + + t-xx) + ^1^3 — 0
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Computing the principal determinant △ and the determinants Axv, Arr, 
and Azz, we can solve the system of equations

_ Axx __ Bi[Cn — Qi(Cn + ^Ci2)]
€xx~ △ ~ (CH -C12)(Ch+2C12)

and similar expressions for eyy and ezz.

5.3
/ \Uk

Jo
+ Cexcj1(0, )]dx

(a)

6 J = ^f^exch c / . ^^exch c < f 
dtp dq>

dx

But dUex/d(p — dh/d(j) c/)2; dU^h/dcf) — 2h{<p)(j)'. Thus

/* \dUK dh a
Jo \_ d(p dq)

dx

Substituting <p' d(p' — d/dx^cf) 6(/)f) — 6(f) leads to

6J =

Thus

+ tj)’1 + (<£'<50) - 2A0" <501 dx
d(j) d(j) dx

[ (dUK dh a d ,
/ Hzt + tZ'P ~W 00 + 2/z—(0 60) 

Jo L \ dv / dx

(b) Integration of the last term yields

/^° d/ 2h-~ (q>f M)dx
Jq dx

dx6J =

J =



SOLUTIONS TO EXERCISES 273

Calling dv — (d/dx)^' => v = $ b(jg u — 2h => du — 2dh/dx =
2{dh/d(j)) (j). This results in

2/z^-(0/ bfydx — 2h{(j))(j) 50]^°

— I (ft 6$ 2 — (j)dx = —2 / <j) —- 8(f) dx 
Jo dq) Jq dtp

(c) Substituting this result in the expression of bJ, we obtain

[<k> [ (dUK dh ,2 oz,,, 9 dh jfi\ c. z '
bJ = —7— + —^ -2h(f) -2 — 0 50 dx

Jq |_ \ dq) dtp dq) J

bJ — 0 implies

dUk dh f2 n
-2hi‘ =°

Multiplying by $ — d(j)/dxy we obtain

/ - 2/^'0" = [A(0)] = 0 or
dx dx dx dx J

uK = - c/exch

CHAPTER 6

6.1 The probability of occupation of a state with energy Em is given by: 
pm = exp[—(Em/kTy}/Z where Z is the partition function

e-(Em/kT)

With the interaction with the magnetic field given by H = -/i • B and using 
p = gl, the nuclear moment in units of pN

F

k
Wnb 

kl
m — 0.366 m

in millikelvins per tesla. Therefore, at 300, 4 and 0.01 K, we will have, 
respectively, Em/kT = 0.458 x!0~5 m, 0.343 x!0~3 m, and 0.137 m. For
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Z = 2, we have m = —2, —1,0,1,2, which, for T = 10 mK, gives

z = e0-274 + e0137 + 1 + e-°'137 + e-°'274 = 5.094

Thus, the probabilities of occupation of the states at 10 mK will be 
p_2 = 0.258 p-i = 0.255, pQ = 0.196, pi = 0.171, and p2 = 0.149. The 
cases for T — 300 K and T = 4 K may be computed in a similar way.

6.2 The interaction energy of the nuclear moment with the magnetic field 
generated by an electron of momentum J can be written as

£=>J>

With the total angular momentum of the atom F = I + J, we obtain

(I • J) - I H[F(F + 1) - Z(Z + 1) - J(J + 1)]

In the case of87 Rb we have I — | and a single electron in the state s, and 
therefore J = S = Thus

F = \I- J+ 1|,...,|Z +J| = 2, 3,4, 5,6

and we obtain the following values for ZE/Afc. —3.5, 2.5, 10.5, 
20.5, and 32.5, corresponding to F = 2, 3,4, 5,6, respectively. If there is 
an applied field sufficiently strong to break the coupling I—J, the hyperfine 
energy takes the form

= Ampnj - g^Bn^

There will then be two groups of nuclear energy levels, corresponding 
to mj = | and mj = — | with mj — —For example, for 
mi — | we wiH have E2/2 = ZA/^ — (^gjp^B if mj = |, and £3/2 — 
—3^4/4 — (^)gipnB if mj — — The other levels can be easily computed 
from the preceding expression.

6.3 
n N fa\l N N

J=1 J=1 /=1

If there is no interaction between the spins, the total wavefunction will
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be given by

\M) . ,mN) = \m{)... \mN)

Therefore

N ।

N 1 -1
2 + T

2
N

In the same way, we may compute

4 N N N N

Computing the expectation value with the previous wavefunction, there 
will appear the following possibilities for the nonzero terms:

j = k\ I = /??: j — /; k - /??: j — /??: k = I

These three possibilities are equivalent to the multiplication of the sum by 
three. We also have that It follows that

6.4
n/ _ 3 pO r2/Tcf — ^b2J

ci = 1
J-M

= y/j(J+V) - M(M- 1)

x V/J(J+ 1) - 1)(M-2)|J; M - 2}

J) J)



276 SOLUTIONS TO EXERCISES

X y/j(J + 1) - M(M - l)(Af - 2)|J; M - 2)SMtJ_2

Substituting the values of and B®, we obtain C2 = 66 K. Thus:

W=J 1-
66 \

10000 = 0"34 J

CHAPTER 7

7.1
H = -p • Bhf = 7/zI • Z?hf; Em = u() = 7^hf; gpN = 7/z

But p,' = gl. It then follows that, 7 = and w0 = 2ttz/0.
Then,

„ _ Mtv M R 
;°~TUhr

Substituting pN = 5.05 x 10 27 J T \ h = 6.63 x 10 34 J s 1 and the 
values of and Z, one obtains z/0 = 17.3 MHz.

7.2
A — Axx + Ayy + Azz

The components of F in the rotating system seen by an observer in the 
laboratory system are

A(0 = Ax, (^)x'(z) + ^y(z)y'(z) + Az,(t)z'(t)

Then

dA dAx> , dAv! dAz> . t dx! t dy t dz 
— = -^-x! + y' + -~Ez! + Axl--+ A^ -A- + AZ' — 
dt dt dt dt dt y dt dt

Now take the particular case in which z and z coincide. In this case we can 
deduce

x! = cos utx + sin ujty\ y = — sin wtx + cos ujty\ z' = z
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Therefore

dx z . x
—— = cu(- sinutfx + costly) 
dt 

dx— = cjz x sm wty + cos wtx 
dt

dx ,
—— = x x
dt

This result was computed for a particular direction of u>, the z direction. 
For an arbitrary direction u; = ux>x + ayy' + cu/z', we will have

co x xf — —ujyii! + cu^y'; (jJ x y' — ujx>t! — ujz>x!\ w xi — —cu^y' + cuyx'

Thus

dx f f
= uz,y - U?yZ

Uj / f
—— = — CJ/X + CJyZ 
dt

dz! , ,— = U^X - Mxly 
dt

Then

dA 
dt

where the subscript G refers to the rotating system. Under the action of a 
field Bo in the laboratory system, the magnetization follows the equation 
(neglecting relaxation effects)

dM _ „
—— = x B
dt 0

In the rotating system we will then have:

dM 
dt

— 7M x Bo + M x (jo 
G

dM 
dt

— 7M x
G
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7M 
dt

= 7M x Beff
G

where Beff is the effective field in the rotating system. We see that if 
cj = -7B0, the effective field will be zero and the magnetization in the 
rotating system will remain stationary. If then a field B! = B{x is applied, 
the motion of the magnetization will be

7M 
dt

= 7M x B| = -BxMy>z + BxMz>y' 
G

We will then have (omitting, to simplify the notation, the G and the prime)

dMx dMy
—7- = 0; —-z = w1M7;dt dt

dMz 
dt

= “Ui My

where — ^Bx. This set of equations has the following solutions:

Mfft) constant = 0; Myff) — Mz(t) = A/o coster

where we have used the initial conditions Mx(0) = 0,3/^(0) =0 and 
MZ(Q) = Mq. The time r required for the field Br to turn the magnetization 
of 180°, that is, from Mq to — Mq, will be given by

7T
W\T = 7T, T = ----

^1
7T

7B1

7.3 The equation of motion of M, neglecting relaxation is:

—— — 7M x B 
dt '

In the presence of an anisotropy field Ba, assumed in the z direction, the 
total field is B = (Bo + Bfik and the resonance frequency is

^0 — 7(^0 + Ba)

1A The magnetization will be proportional to n — N2 - M; with N = 
/V2 + M, we will have

xr N — n N + n
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Then

= jy21A^2 - Wl2Nr + Wr(N2 - Wr[Ni

= WnNx - W2lN2 + JFrfM - JVrfN2 
at

Subtracting the second from the first, we arrive at

— - N2) -~dt~ + ■ ^12-^21
^12+^21

(PF12 + ^21)— n

or

dn nuz inQ~n

where n0 = N(iTn - W2l')/(W]2 + W2I) and 1.7 = (H',2 + W2I). In the 
stationary state, dn/dt = 0, and

«o n =--------------
1+2^^

When 2H/rfT1 < 1, n n0, and Mz does not change much. The power 
absorbed by the field will be

dE
— = 7V2 WTfhw — N\ = n Wtfhw

or

dE * Wrf 
dt 1 -j- 21vrf7 j

We know that PFrf oc B^. Therefore, as long as 2W^T\ < 1, the absorbed 
power may be increased by increasing Bx. However, when 2 PFrf Ti « 1, PFrf 
in the numerator tends to cancel with the denominator, dE/dt does not 
depend any more on , and the system does not absorb more energy from 
the field. This is the phenomenon of saturation.

CHAPTER 8

8.1
1 /*+°° 1 r+T/2 7 o /, .j’X

Bl H = — / Bl (ty^dt = ~= / Bl (t)eiu,dt = sin I — )
V^7-oo V w \2 J
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The absorbed power is proportional to

2B\ . 2 wT
P(W) CX —2" Sm (~v)

2

The function P(V) may be written as

sin2(7rz/T) sin2#
P(u) = PQ----- —y2 = PQ —y~k 7 0 (wT)2 e2

where 0 — irvT. For 0 = 0, applying 1’Hospital’s rule one finds: P(0) = Po. 
For 0 = 7r/3 we will have P(tt/3) = O.68Po. For 0 = tt/2 we find 
P(tt/2) = O.41Po. Therefore, the half-height of the curve will occur 
around 0 ~ tt/2 ~ nuT or v ~ 1/2T, and the width of the curve (band­
width) will be

Az? ~ 2 x — — —
2T T

For T — 10 /is the width will be Az/ ~ 1 MHz.

8.2 (a) Let Ms = the magnetization and 6x = the displacement of the wall in 
the x direction. The fractional increase of the volume is

The increase in the magnetization in the direction of Bx is

2M A 6xkWik = Ms <5Kk - Ms <5K(-k) = 2MS 6V k =-- s—---

(b) But W, = (Xe/^o)^!- Thus:

or =
Mo F 2MsA/Jjq

(c)
de{x) =

But the hyperfine field is parallel to the moment of the ion, and is
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rotated to the same amount. We see that

6BX Bh^e

and

B\ = 2?!(1 + 7?) « rjBx = 60 BxBh( = (^B^B,
2A/i$Ms \dxJ

Therefore

8.3

VXe 
2A/j,qMs

@p Xn^X^p

The condition of negligible relaxation during the application of the pulse is 
T2 rp. For 0p = tt/2, we will have

T2
7F 1 1

B\
^nTl

With 2/tt « 1, we will have

For 7„ « 1 MHzT1 and T2 « 100 /is we find B'x 0.01 T. Fields 
generated in laboratory coils are of the order of 10 G or 0.001 T. However, 
with amplification factors of the order of 103, we will have B\ 1 T. A 
linewidth of 5 MHz is equivalent to T2 — 0.2 /is, which corresponds to a 
field of the order of (1 MHzT-1 x 0.2 /is)-1 = 5 T, an extremely large 
value to be generated by an rf coil.
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APPENDIX C

PHYSICAL CONSTANTS

Quantity Symbol Value CGS SI

Speed of light 
in vacuum

c 2.997925 1010 cm s“' 108 m s“'

Elementary charge e 1.60218 — 10~l9C
Planck constant h 6.62607 10-27 erg s 10"34 J s

Avogadro constant

Atomic mass

7? = A/27F 
na

1.054572
6.02214 

xlO23 mol-1

10-27 erg s 10“34 J s

constant mu 1.66054 IO’24 g 10"27 kg
Electron mass me 9.10939 IO*28 g 10*31 kg
Proton mass
Ratio of proton and

mp 1.67262 IO 24 g IO’27 kg

electron masses
Proton gyromagnetic

mp/me 1836.153 — —

ratio
Electron Compton

2.67522128 104 s“‘ G"1 108 s*1 T-1

wavelength Xc 2.42631 10-10 cm 10-12 m
Bohr radius aQ 0.529177 108 cm IO’10 m
Bohr magneton llB 9.2740154 IO"2' erg G“' io 24 j r1
Nuclear magneton P'N 5.0507866 10“24 ergG-1 10-27 J T“'
Boltzmann constant 
Reciprocal of fine-

k 1.380658 10“16 ergK"1 10~23 J K-1

structure constant \/a 137.036 — —
Rydberg constant R^hc 2.179874 10-11 erg 10“18 J

283
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Quantity Symbol Value CGS SI

Molar gas constant A 8.31451 107 erg mol-1 K-1 J mol"1 K"1
Vacuum permittivity eo — 1 107/4ttc2
Vacuum permeability Mo — 1 4tt x 10"7Hm“'

Electronvolt eV 1.60218 10~12 erg 10"19 J
Electronvolt/h eVh“' 2.41797 xlO14 Hz — —
Electronvolt/hc eVh-1c-1 8.06546 103 cm-1 105 m-1
Electronvolt/k eVk-1 1.16044 xlO4K — —
Electronvolt/cm-1 eV cm-1 1.986 10"16 erg 10“23 J
Angstrom A 1 10“8 cm 10“'°m
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a (lattice parameter), 90, 151
a (quadrupole interaction parameter), 

221-222
A (mass number), 160
A (hyperfine interaction constant), 173
A' (exchange stiffness), 151
A(r) (vector potential), 166-167
AB2. 108
Absolute sensitivity, see NMR absolute

sensitivity
Absorbed power, 202-203, 236-237, 279, 280
Absorption, 199
Absorptive part of the susceptibility, 202
Actinides, 40,91,93, 170, 180
Activation energy, 17, 207
AFMR, see Antiferromagnetic resonance
After-effect, 148-149
Aging, 149
Al, 181
Alkali metals, 91, 188
a, (direction cosines), 123

(2nd order crystal field constant), 56, 57
a-Mn, 14
Aluminum, 40, 180
Amorphous, 13, 228
Am2+, 170, 183
Ampere law, generalized, 2
Amperes per meter, 3
Amplification, 227, 232, 238
Amplification factor, 233, 237, 281. See also

Enhancement factor
An (actinides), 93
Angular frequency, 150, 154, 182, 189, 194,

197-199, 204,215
Anhysteretic curve, 141
Anisotropy

axis, 144-145
constant, 123-124, 143
energy, 25, 123-124, 127-128, 131, 133,225, 

255, 271

field, 124, 135, 141, 145, 153, 157, 232, 237, 
243-245, 278

mechanisms, 132
tensor, 244

Antiferromagnet, 15, 60, 178, 227
Antiferromagnetic resonance (AFMR), 153, 

245-246
Antiferromagnetism, 14-15
Antisymmetry, 65-66
Arrott plot, 109, 111-112
Asperomagnetism, 17
Asymmetry parameter, 163
Atomic radius, 37, 40
Avogadro constant, 60, 259
Axial anisotropy constants, 132
Azbef-Kaner resonance, 153

B, B (magnetic induction), 2, 7, 149, 165, 
167, 169, 181, 185, 194-195, 260, 269

Ba (anisotropy field), 153, 225, 232, 237, 244
Bc (contact hyperfine field), 169-170
Bcp (core polarization hyperfine field), 170, 

174-175, 179
Bdip (dipole field), 174-175
Bhf (hyperfine field), 173-174, 179-180, 185, 

232, 239, 248
(magnetoelastic coupling constants), 130

Borb (orbital hyperfine field), 175
Bx (time-dependent field), 203-204, 214-215, 

220, 224, 227-228, 232, 237-240, 242, 
248-249, 278

B2 (effective rf field), 236-237
Bs, (spin magnetic dipole field), 168
B™ parameters, 57-58
BaFe12O19, 124
Band, 91-93, 100-102, 107, 113, 270
Barium ferrite, 124
Barkhausen effect, 137
Barkhausen noise, 137
Basal plane, 124

287
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jBj (4th order crystal field constant), 57
Bethe-Peierls-Weiss method, 79
(BI J) (energy product), 12, 23
B - //curve, 23, 140-141
B X //curve, 121, 138
B - //plot, 115
(B//)max,23, 141, 148
Bloch equation, 153, 191, 195-196, 198-199, 

207,210, 227, 230, 236
Bloch functions, 168
Bloch T3/2 law, 87, 90
Bloch wall, 134-135, 157, 240, 245
Blocking temperature, 17
Bohr magneton, 28, 48, 60, 160, 172, 192, 259
Boltzmann distribution, 35, 41, 190, 207-209
Boltzmann population, 187
Bose statistics, 65
Bosons, 65
Boundary conditions for H and /?, 4
Bowing, 136
Brillouin function, 20, 43-44, 48, 60

C (Curie constant), 78, 259
Cjj (elastic moduli), 128, 130
Cp (specific heat), 75
c-axis, 124
Canted magnetism, 17
Centimeter-gram-second (CGS), 2-5, 9-11, 

28, 124, 177
CESR, see Conduction electron spin 

resonance
CF, see Crystal field
CGS, see Centimeter-gram-second
Chemical potential, 95, 266 
/(susceptibility), 118 
/ (susceptibility tensor), 244-245
Xo (Pauli susceptibility), 97
Xa (spin wavefunction), 81

(spin wave function), 81
Xcgs (X in the CGS system), 5
Xw (susceptibility per mole), 77-78
Xn (nuclear susceptibility), 48, 200-201
Xp (Pauli susceptibility), 71
X(R) (nonuniform susceptibility), 71
X', 200, 202
X", 200, 202-203
Closed shells, 92, 170
Closure domain, 133
Cluster glass, 17
Co, 54,91,229-230
Co2+, 33-34, 36
59Co, 213. 223. 229-230
Cobalt. 3, 135. 213
Cobalt metal, 124
Co/Cu multilayer, 229-230

Coercive field, 18, 140-141, 148
Coercive force, 24, 140
Coercivity, 24, 115, 140-141, 143, 148
Coherence, 204, 215
Combined electric and magnetic

interactions, 183
Complex susceptibility, 236
Conduction band, 74, 100
Conduction electron, 70-72, 92-93, 108, 113, 

153, 161, 170, 177, 181,211-213
Conduction electron spin resonance (CESR), 

153
Contact hyperfine field, 173
Continuous wave (CW) technique,

199, 220
Convection currents, 2
Coordinate system, 196, 198, 261
Copper, 40, 154, 182
Copper oxide, 13
Core correction factor, 183
Core polarization, 170, 175. 179
Correlation function, 78, 204-205
Correlation time, 204-206
Coulomb energy, 65
Coulomb interaction, 72, 159
Coulomb potential, 64
Coulomb term, 161, 167
Coulomb’s law, 119
Coupled two-spin system, 227, 230
Cr, 44
Cr3+,44
Critical exponents, 112
Critical field, 118
Cr2O3, 18
Crystal

anisotropy, 123
field, 55-56, 58. 61, 129, 160, 175, 179,

188, 262
field interaction, 55-57

Crystalline
anisotropy, 68, 132, 144, 243-244
field (CF), 46-47, 123, 188
materials, 13

Crystallites, 132
Cs, 91
Cu-Ni alloys, 104-105
Curie constant, 45, 78, 259
Curie law, 13-14, 45,48, 201
Curie temperature, 13, 22, 51-55,

74, 130
Curie-Weiss dependence, 107
Curie-Weiss law, 13-14, 55, 76
Current density, 2, 166-167, 171
CW. see Continuous wave
Cyclotron, 153
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Cyclotron resonance, 153

D (diffusion coefficient), 214
D (stiffness constant), 80, 84, 88-89, 154
D (displacement vector), 2
d electrons, 57, 92, 108
d group, 107
d series, 46
d transition metal, 24, 107
d-d interaction, 107-108
Damping, 245
Defects, 136-137
<S/y- (Kronecker delta), 161
A (hyperfine anomaly), 173
Demagnetization curve, 120-121
Demagnetizing factor, 8-10, 25, 116, 125,

177, 239, 242-243, 256
Demagnetizing field, 8, 10, 119-121, 125, 

140, 152-153, 177, 228, 232, 242
Demagnetizing tensor, 9, 242
Density, 5, 104, 164
Density matrix, 193
Density of free poles, 8
Density of states, 92-96, 98, 101, 103, 113-114, 

211-212, 266
Detailed balance, 209
Diamagnet, 1, 13-14, 18
Diamagnetic susceptibility, 49, 60, 99
Diamagnetic volume susceptibility,

28-29
Diamagnetism, 13, 28
Differential susceptibility, 28
Diffusion, 149, 214
Diffusion coefficient, 214, 219
Dipole-dipole interactions, 211
Dipolar field, 168, 175-177, 205, 210
Dirac’s equation, 61
Dirac’s theory, 31
Direction cosines, 123, 129-132
Direction of easy magnetization, 122, 124
Direction of magnetization, 61, 115, 124,

130, 136, 145-146, 213, 240, 248, 261
Disaccommodation, 149
Disordered materials, 13
Dispersion, 199
Dispersion relation, 84, 89, 93
Dispersive part of the susceptibility, 202
Displacement vector, 2
Domain, 13, 49, 115, 119, 123, 132-135, 137, 

141, 144-147, 151-152, 157, 212, 214, 227, 
237-238, 240, 248

Domain wall, 132-133, 135-137, 141, 144, 
149-150, 152, 212, 214, 228, 237, 238, 
240, 259

Domain wall center (DWG), 239

Domain wall edge (DWE), 238
Domain wall motion, 115, 150
Domain wall thickness, 133-134
Dynamic effects, 148
Dynamic frequency shift, 229, 233

E (Young’s modulus), 128
E (electric field), 7
Ea (activation energy), 207
Eei (elastic energy), 128
Ef (Fermi energy), 74, 94-95, 109
Ek (magnetic anisotropy energy), 123-124, 

128, 133
Eme (magnetoelastic energy), 128, 131
Ems (magnetostatic energy), 120-121
E(k) (dispersion curve), 94
Easy axis, 125
Easy direction, 122, 126, 132, 137
Easy magnetization, 124-125, 133, 135, 145
Easy plane, 122, 126
Eddy currents, 149, 150, 245
Effective mass, 133
Effective paramagnetic moment, 45-46
EFG, see Electric field gradient
£tjk (Levi-Civita symbol), 167
Elastic energy, 128
Elastic moduli, 128, 130
Electric charge density, 2, 162, 164
Electric field gradient (EFG), 162-163, 165,

182-184, 203, 221
Electric field gradient (EFG) tensor, 163, 183
Electric monopole moment, 159
Electric quadrupole interaction, 162, 221, 

224, 228
Electric quadrupole moment, 159-160,

162-163
Electric quadrupole moment tensor, 162
Electron-electron interaction, 72-73, 100, 102
Electron gas, 101, 114, 211, 213, 266-267
Electronic susceptibilies, 235
Electron paramagnetic resonance (EPR), 

153-154
Electron spin resonance (ESR), 153
Ellipsoid, 9, 125
Emu, 3-4
Energy product, 12, 23, 141, 147-148 

maximum, 148
Enhanced Pauli paramagnetism, 15
Enhanced susceptibility, 73, 235
Enhancement, 227, 232
Enhancement factor, 73, 220, 232, 237, 240, 

248
£jj (strain), 127, 128
EPR, see Electron paramagnetic resonance
Equilibrium magnetization, 121
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Er, 58
ri (asymmetry parameter), 163
T] (enhancement factor), 220, 233, 237, 

239-240, 248
T]d (domain enhancement factor), 237-238 
rjw (wall enhancement factor), 238-241
Eu, 46, 174
Eu2+. 174-175
Eu3+,46
Exchange

constant, 70-71, 89
energy, 127, 133, 135, 157-158, 269
integral, 65, 70, 72-73
interaction, 13, 63, 69, 113, 119, 123.

126-127, 135, 160, 175, 188, 270
parameter, 127
stiffness, 151

Expectation value, 67, 193, 258, 275
Extraionic field, 56, 177-178
Extraionic interactions, 175

F (correlation function), 204
F (enhancement factor), 73
F (total angular momentum), 48, 174, 274
f(E) (Fermi-Dirac distribution), 98
f electrons, 57
f states, 73
Faraday law, 2, 150
Fe, 18, 44, 54, 70, 91-93, 102, 122, 170.

180-181.212, 242
57 Fe, 179, 181,212. 228
Fe3+,44
FeB,229
Fe86Bl4. 228
Fe-Al, 181
Fe-C alloy, 149
FeO, 14
Fe3Mn, 14
Fe2O3, 18,21
Fermi contact, 169, 175, 212
Fermi-Dirac distribution, 98, 211, 266
Fermi-Dirac function, 95, 105
Fermi-Dirac statistics, 65
Fermi distribution, 97
Fermi energy, 94-95
Fermi /eve/, 93, 96, 98, /02, 18/, 2/2
Fermi surface, 113
Fermi temperature, 112
Fermions, 65
Ferrimagnet, 16
Ferrimagnetism, 15-16
Ferrite, 49, 150
Ferromagnet, 1, 15, 18, 53, 55, 74, 79-80, 86,

178, 225, 227, 235-236, 242, 244-245, 248

Ferromagnetic material, 132, 144,
148, 150, 242

Ferromagnetic nuclear resonance (FNR), 227
Ferromagnetic resonance (FMR), 153-154, 

225, 234, 242, 244-245
Ferromagnetism, 13, 15, 49, 63, 91, 100, 

102-103, 113-114
FeSi alloy, 150
FID, see Free induction decay
Filling factor, 220
5d series, 56
5f electrons, 93
5/shell, 92
Fluctuations, 69, 203-206, 210-211. 213.

215, 220
Flux density, 150
FMR, see Ferromagnetic resonance
FNR, see Ferromagnetic nuclear resonance
Forced magnetization, 129. 144
4/ electron, 47, 70, 91, 93
4/ion, 58
4/ orbital, 70, 108
4/ series, 56
4/shell, 13, 46, 92, 175
4/ state. 73
4s electrons. 22, 91-92
Fourier intensity, 206
Fourier spectrum, 203, 220, 247
Fourier transform, 205, 217-218
Fourier transform NMR, 220
Free electrons. 93-96, 98-99, 101, 104,

113-114
Free energy. 109
Free induction, 217, 220
Free induction decay (FID), 215, 218-220,

240-242
Free ion, 70, 165, 174-175. 179. 182
Free poles. 7, 10. 177
Frequency diffusion, 214
Frequency pulling, 229. 232
Frustration, 18

g fe-factor), 28. 35. 154, 189
G (gauss), 2, 4
g{ (nuclear g-factor). 160
Gadolinium, 13, 53, 70
Y (gyromagnetic ratio), 28, 48, 80, 151, 153,

160, 182, 189, 191, 193, 197, 214, 231, 239
Yao (Sternheimer factor), 183
Yj (6th order crystal field constant), 57
Gauss, 2, 4
Gaussian, 219
Gauss law, 2
Gd, 44, 54, 74, 87
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Gd3+, 33, 44, 163, 170, 175, 180
157Gd, 224
GdCo2, 223
GdFe2, 15, 108
GdNi2, 108
Giant magnetoimpedance, 154
Gilbert equation, 153, 245
Gold, 40
Gyromagnetic ratio, 28, 48, 80. 151, 153, 160, 

182, 189, 191, 193, 197.211,214, 231.239

H, //(magnetic field intensity), 2, 7, 115. 200
Ha (anisotropy field), 124, 145
Hc (coercivity), 148
Hc (critical field), 118
Hc ] (critical field), 118

56-58, 61, 160, 188, 261, 263, 275
«coui-55-56
Hd (demagnetizing field). 8, 120-121, 140. 242
Heh 175
«exch-160
«hf. 160. 173-175. 183
ft LS. 55-56. 160. 175
Mmag. 56.183
H q (electric quadrupole hamiltonian), 

162-164, 183
bHc (coercivity), 140
hHc (coercivity), 140
Hahn, 218
Hahn echo, 221-222
Hard magnetic material, 116, 141, 147
Heisenberg hamiltonian, 63, 68-69. 81. 87-88
Heisenberg representation, 192
Helimagnet, 18
Ho, 58
165 Ho. 180
Holmium, 180
Homogeneity, 221
Homogeneous broadening, 216. 220
Hooke’s law. 128
Hund’s rules. 33-34
Hybridization. 73, 93
Hydrogen, 60
Hyperfine anomaly. 173-174
Hyperfine field. 57. 165. 167-168. 170.

172-175, 177-181. 185, 221, 224, 227-228.
230, 232-233. 237. 239, 248. 280

Hyperfine interaction, 159-160. 173. 175.
182, 188,227, 229-230

Hyperfine interaction constant, 173
Hyperfine quantum number. 174
Hyperfine splitting, 174
Hysteresis, 17, 141, 150

curve, 140-141, 145, 147

cycle, 137, 141
loop, 137, 141, 147-148
loss, 120, 141, 150

I, / (nuclear angular momentum), 160, 
200-201,213, 221

I (magnetization intensity), 5
Ideal demagnetized state, 145
Ideal diamagnet, 115, 118
Ideal diamagnetic material, 117, 119
Ideal hard magnetic material. 115-116
Ideal magnetic materials, 115
Ideal nonmagnetic material, 115-116
Ideal soft magnetic material, 115-117
Imaginary part of the susceptibility, 236
Impurity, 116, 136-137, 180-181
Incipient ferromagnetism, 15
Incomplete shell, 12-13, 55, 93, 170.

174-175
Indirect interaction, 70, 72, 229
Induction, magnetic, 1
Inhomogeneity, 215-216, 220-221, 242
Inhomogeneous broadening, 248
Initial permeability, 138-139, 147
Intermediate magnetic material, 141, 143
Intermetallic compound, 107-108. 124, 

177-178, 230
Intraionic interactions, 175
Intrinsic susceptibility, 244
Inverse magnetostrictive effect, 129
Ion-electron system, 110
Iron. 3. 13. 20-21. 60. 70, 92, 95-96, 102, 

121-122, 132, 135, 154, 178-180, 241,259
Iron carbon, 21
Iron group, 13, 40, 91
Irreversible process, 135-136, 150
Ising hamiltonian, 68
Isochromat, 215, 217, 219
Isochrone, 215, 217-218
Isomer shift, 164
Itinerant antiferromagnet, 14
Itinerant electron, 71, 91, 93, 100, 105
Itinerant ferromagnet, 102
Itinerant magnetism, 18, 107
Itinerant moment, 107

j (current density). 2
J (polarization), 3, 5, 140
J (total angular momentum), 69, 75. 165.

173-174. 261
J (exchange integral), 65-68, 73-74, 77,

82, 89. 105, 108-109, 127
jz (total current density), 2
J (co) (spectral density function), 205
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jj coupling, 33

k (Boltzmann constant), 103
K (potassium), 91
Kq (anisotropy constant), 123-124 

(anisotropy constant), 123-124, 143
K2 (anisotropy constant), 123-124
Ks (surface anisotropy constant), 126
Ku (uniaxial anisotropy constant), 126, 131, 

135
Kennelly convention, 5
Knight shift, 177, 181-182,212
Korringa relation, 212
Kronecker delta, 161

L (total orbital angular momentum), 32, 
172-173, 175

La, 40
k (magnetostriction), 129
X (spin-orbit coupling constant), 34 

(molecular field parameter), 50, 53, 103, 
105, 259

Xs (saturation magnetostriction), 130-131
Landau diamagnetic susceptibility, 29
Landau diamagnetism, 13
Landau expansion, 109
Landau-Lifshitz equations, 153, 245
Lande g-factor, 35, 47, 68
Langevin, 17, 48
Langevin function, 48-49
Langevin magnetism, 60
Langevin paramagnetism, 47
Lanthanide, 40, 93
Laplace’s equation, 163, 256
Laplacian, 80, 164
Larmor diamagnetic susceptibility, 29
Larmor frequency, 29, 59, 196-199, 

203-206,215
Legendre polynomial, 30, 61
Lenz’s law, 28, 150
Levi-Civita symbol, 167
Li, 91
Lifetime. 215
Linear chain, 83, 88
Lines of force, 7, 117-119
Linewidth, 178, 211, 221, 224, 228
Ln (lanthanides), 93
Load line, 121
Local field, 206
Local magnetization. 177, 248
Local order, 74-77, 79
Local technique, 19
Localization, 70, 92
Localized-itinerant systems, 107

Localized magnetism, 18, 105
Localized spin fluctuations, 16
Longitudinal relaxation, 196, 203, 207, 

211-212
Lorentz field, 177
Lorentz force, 2, 29, 257
Lorentzian, 200, 218
Lorentz sphere, 177
Loss factor, 151
Loss of memory, 214, 220
LS coupling, 32-33, 172
Lu, 40
LuFe2, 108
LuNi2, 108

m (magnetic dipole moment), 119
M (magnetization), 104-105, 120, 149, 154
M, M (magnetization), 69, 104-105, 115, 120, 

125-126, 135, 149, 154, 168, 177, 189, 
192, 194-195, 201, 225, 228, 237, 242-243, 
256, 270, 278

me (electron mass), 27, 48, 94
Me (equilibrium magnetization), 120-121
Mi (local magnetization), 177
mp (proton mass), 48, 160, 192
Mr (remanence), 148
Ms (saturation magnetization), 120-121, 124, 

141, 148-149, 243,248
M - Hcwk 115, 118, 140, 144-145
M- H loop, 138, 140, 148
Magnet, 2, 7, 22, 132
Magnetically hard material, 18
Magnetically soft material, 18
Magnetic anisotropy, 119, 121, 123, 135
Magnetic anisotropy energy, 125
Magnetic circuit, 10
Magnetic dipole interaction, 63, 165
Magnetic dipole moment, 3, 27, 119, 

159-160, 165, 167-168, 170, 189
Magnetic field, 1, 69, 123, 129, 132, 135. 144, 

149-150. 152-154, 167, 181-182, 188-192, 
195, 198, 200, 203, 205-207, 213-215, 
220-221, 225, 227, 231, 244-245, 260, 
273-274

definition, 1
Magnetic field gradient, 214
Magnetic field intensity, 2-3

definition, 3
Magnetic flux, 150, 220
Magnetic flux density, 2
Magnetic induction, 1-3, 216
Magnetic material, 19-20, 119-120, 122, 127, 

129, 137, 143, 145, 150. 160, 165, 178, 
212, 214, 216, 227-228, 237, 240, 243
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Magnetic moment, 2-3, 25, 27-28, 32, 60, 
69-70, 75-76, 91-92, 96, 98, 107, 122. 
132, 134, 151, 153-154, 165, 167, 171, 
175, 178, 181, 191-193,210,213-214, 
217, 227, 229-230, 238-239, 242, 248, 
259, 263 

definition, 3
Magnetic orbital moment, 27, 32, 34 
Magnetic permeability. 5, 6, 118, 147, 

149-150, 154
Magnetic pole density, 25
Magnetic poles, 119
Magnetic quantities, 1-2, 11
Magnetic quantum number, 31
Magnetic recording, 19
Magnetic recording media, 18
Magnetic resonance, 153, 189-192, 200, 211, 

230, 232, 242
Magnetic saturation, 130
Magnetic self-energy, 25
Magnetic shield, 117
Magnetic units, 1-2, 11
Magnetic susceptibility. 5. 244
Magnetic susceptibility tensor, 244, 245
Magnetism, 1, 229
Magnetite, 15, 21
Magnetization, 2-3, 69, 72, 74-75, 77, 79-80, 

82, 86-87, 89-90, 97-100, 102-103, 
105-106, 109, 113, 115, 118, 120-122, 
124-125, 127, 129, 131-133, 135, 137-138, 
141, 144-145, 148-150, 152, 154. 157, 168, 
170, 175, 179, 181, 189-190, 193, 195, 197, 
199-204, 214-220, 222. 225, 227-228, 
230, 232, 234, 236-237, 239, 241-243. 
246, 248, 256, 259, 268, 270, 277-278, 
280 

definition, 3
Magnetization curve, 115, 118, 123, 137-141, 

146-147
Magnetization intensity (I). 5
Magnetization loop, 120
Magnetization process, 137
Magnetocrystalline anisotropy, 123
Magnetoelastic coupling, 156
Magnetoelastic coupling constants, 129-130, 

157
Magnetoelastic energy, 127-128, 131-132 
Magnetoelastic interaction. 119 
Magnetogyric ratio, 28, 191
Magnetostatic energy, 119-121, 125, 133 
Magnetostriction, 119, 127, 129, 131-132 
Magnetostriction constant, 130 
Magnon, 19, 84, 86, 89-90, 211-213, 229 
Maximum permeability, 138-139

Maxwell equations, 2
Mean field, 50, 69, 74, 246
Mean field approximation, 63, 100
Measurement time, 178
Medium crystal field, 56
Metal, 13, 46, 70, 72, 91-92, 95, 107, 124, 153, 

161. 165, 175, 181-183, 188, 207,211-213. 
249

Metallic film, 22
Metamagnetism, 15-16
Microstruture, 24
Mictomagnetism, 17
Minor loop, 138-139
Mixing, 74
Mn2+, 233
Molecular field, 50, 53, 63. 72-74, 79, 100, 103.

188, 246
approximation, 69, 112, 232
coefficient, 50, 60, 73
constant, 50, 70, 77
parameter, 53, 232

Moment rotation, 141
Mossbauer effect, 164
Mossbauer spectroscopy (MS), 19, 164, 174, 

179, 181
Motional narrowing, 205 
p (chemical potential), 95, 266
M (magnetic dipole moment), 189
p (permeability), 5, 118, 140, 154
p0 (vacuum permeability), 2-3. 73, 119, 121.

140, 166. 235
HB (Bohr magneton), 160 
p, (initial permeability), 138. 147 
/jm (maximum permeability), 138
P/v (nuclear magneton), 160, 174, 192, 276 

(relative permeability), 5-7
Multidomain sample, 123, 240, 245
Multiplet, 33, 36-37, 45-46
Muon, 19
Muon spin rotation, 19

N (north), 7
Nd (demagnetizing factor). 8-10, 116, 121.

239
Nj (demagnetizing tensor). 9. 242
n(E) (density of states per volume), 92, 94.

96, 98
N(E) (density of states), 93. 95-96
NdFeB, 18, 148
Neel temperature. 14. 60, 259
Neel wall, 135
Neutron, 19, 79, 84
Neutron diffraction, 19, 92
Ni. 18, 20, 54, 70, 76, 91, 102, 122, 213, 242
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Nickel, 3. 13, 20, 92, 102, 107. 121, 129
6lNi, 212
90° domain wall, 135
NMR, see Nuclear magnetic resonance
Noble gases, 37, 40
Noble metals, 40, 92-94
Nonsecular broadening, 204, 206
Normal metals, 40, 92, 94
Normal modes, 233
North pole, 7, 118
v (Poisson ratio), 128
v (Rayleigh coefficient), 147
Nuclear g-factor, 48, 160, 173, 182, 191
Nuclear magnetic relaxation, 229
Nuclear magnetic resonance (NMR), 19,

153, 174, 177-180, 204, 227, 237
absolute sensitivity, 201, 254
experiment, 201, 212, 214, 221-222
frequency, 181-182, 224, 233, 242
line, 214, 218, 248
in metals, 242
nuclide, 229
pulsed, 214, 218, 248
relative sensitivity, 201, 254
sensitivity, 201, 254
signal, 201, 229
spectrum, 217, 221, 223-224, 228, 230
spectrum shape, 217
technique, 214, 220, 229

Nuclear magnetism, 48, 160, 165
Nuclear magneton, 48, 160, 174, 192,

273
Nuclear magnetic susceptibility, 48-49,

200-201
Nuclear radius, 164, 173
Nuclear resonance frequency, 235-236
Nucleation, 137
Nutation, 214

O"' operators, 57
Oersted (Oe), 3, 4
Oguchi method, 73
Oguchi model, 77, 79
co (angular frequency), 150, 154, 189, 198-199
co(fc) (dispersion relation), 84
co0 (Larmor frequency), 199, 205-206, 235
coL (Larmor frequency), 29
One-dimensional chain, 127
180° wall, 134-136, 152
Operator equivalents, 56
Orbital angular momentum, 27, 28, 31-32,

123, 168, 172, 175
Orbital contribution, 170
Orbital quantum number, 31

Order parameter, 74-75, 78-79
Oscillating field, 192, 199, 201, 211, 227
Oscillations, 221, 223

p (pole strength), 119
P (absorbed power), 202-203
p 1/2 electron, 164, 169
p orbital, 61
PAC, 174
Pair, 75-77, 79, 85, 127, 133, 269
Palladium, 73
Palladium group, 40
Paramagnet, 1, 19, 53, 103
Paramagnetic Curie temperature, 55, 78
Paramagnetic material, 55, 178
Paramagnetic moment, effective, 45-46
Paramagnetic sample, 45
Paramagnetic susceptibility, 93
Paramagnetism, 13

Van Vleck, 19
Paramagnon, 16
Parity, 162
Partition function, 260, 273
Pauli matrices, 81
Pauli paramagnetism, 13, 91
Pauli principle, 34
Pauli susceptibility, 29, 71, 98-99, 112-113,

181
Pd, 102
peff (effective paramagnetic moment). 45-46
Penetration depth, 154
Periodic table, 37-38, 40
Permalloy, 18, 129
Permanent magnet, 3, 18, 21, 23-24, 108, 116,

141, 148
Permanent magnet material, 143, 147-148
Permeability, 150-151
Permeance coefficient, 121
Perturbation theory, 185
Perturbed angular correlations, 174
Phonons, 211
7T pulse, 218
7T/2 pulse, 214-216, 218
Pinning, 136-137
Planck distribution, 86
Platinum group, 40
Poisson equation, 164
Poisson ratio, 128
Polarization, 3, 5, 140, 175. 177, 181-182
Pole strength, 119
Positron, 19
Positron annihilation, 19
Power transformers, 150
Principal quantum number, 31
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Pulsed magnetic resonance, 203, 214
Pulsed resonance, 199, 203

Q (electric quadrupole moment), 160, 165, 
221

Q (quality factor), 220
Quadrupole interaction, 162, 165, 221, 

223-224, 261
Quadrupole interaction parameter, 221-222
Quadrupole oscillation, 221-223
Quality factor, 220
Quantum mechanics, 63, 162, 229
Quantum number, 170
Quenching, 57, 61, 188

R (EFG correction factor), 183
Radiofrequency, 190, 214
RA12, 177-178
Rare earth, 13, 24, 40, 46-47, 56, 58, 68, 70-71, 

73, 91, 93, 107-108, 160, 165, 170, 175. 
177-178, 180, 183, 188

Rayleigh coefficient, 147
Rayleigh curve, 146-147
Rb, 91
87 Rb, 274
RbMnFej, 84
Reduced magnetization, 104-105
Reduced mass, 30
Relative magnetic permeability, 6-7
Relative magnetization, 100
Relative permeability, 5
Relative permeability tensor, 245
Relative sensitivity, NMR, 201, 254
Relaxation, 190, 203, 211, 214, 224, 231, 236, 

245, 277
Relaxation mechanisms, 212
Relaxation process, 193-194
Relaxation time, 195, 203-204, 206-207, 

211-212
Remanence, 140-141, 147-148
Remanent magnetization, 140
Resonance, 148, 152-154, 220
Retentivity, 115, 140-141, 147 
rf, 201,214
rf field, 203, 228, 236-242, 244-245, 248
RFe2, 107
R2Fe17, 107
R2O3 oxide, 46
RNi2, 108 
p (electric charge density), 2 
Rotating axes, 196, 199, 203 
Rotating field, 196, 201
Rotating coordinate system, 197-198, 214, 

216,219, 224-225, 276-278

Rubidium, 188
Ruderman-Kittel, 213
Ruderman-Kittel-Kasuya-Yoshida (RKKY) 

interaction, 213
Ruderman-Kittel-Kasuya-Yoshida (RKKY) 

model, 72
Russell-Saunders coupling, 32

5 (penetration depth), 154
s (conduction electron spin), 71
S (south), 7
S (total spin angular momentum), 32, 172, 

173
5 electron, 73, 164-165, 169-170, 175
S state, 163, 170, 180
s - f hybridization, 73
Saturation, 131-132, 138, 140, 144-145, 148,

196, 203, 225, 279
Saturation magnetization, 115, 121, 123-124,

140-141, 148, 243,248, 259
Saturation magnetostriction, 130, 132
Saturation magnetostriction constant, 130
Sc, 40
Schrodinger equation, 29-30, 63, 82
Secular broadening, 204, 206
Self-correlation, 204
Self-energy, 120
Semiconductor, 153, 161, 165
Shape anisotropy, 125-126, 144
Shape anisotropy energy, 125
Shape effect, 132
Shell, 30, 47, 180, 182
Shielding, 46
Short range correlation, 74
Short range order, 75
SI. 2-3, 5, 9-11,25, 28, 50, 119, 124, 163,

177, 257
o (magnetization per unit mass), 104
o (projection of S along J), 68-69, 177-178.

180
o (stress), 127- 128
Silver, 40
Single-crystal, 121-122
Single domain, 123, 135-136, 149
Singlet, 65
Skin effect, 154, 242
Slater-Pauling curve, 20, 22
Slater-Pauling dependence, 107
Slow passage, 199
Sm, 46
147 Sm. 229
Sm3+, 46
Sm2Fe17, 229
Sodium chloride, 13
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Soft magnetic material, 116-117, 141-142
Solenoid, 3
Sommerfeld convention, 5
Sommerfeld expansion, 266
South pole, 7
Space quantization, 31
Spatial diffusion, 214
Specific heat, 75, 90
Spectral density function, 205
Spectral diffusion, 214
Spectroscopic splitting factor, 192
Sperimagnetism, 17
Speromagnet, 17
Speromagnetism, 17, 18
Spherical harmonics, 161
Spin, 28
Spin angular momentum, 28, 32, 57, 168
Spin density, 71, 80, 87-88, 168-170, 173
Spin echo, 214, 218, 220-223, 229, 240
Spin function, 65
Spin-glass, 17-18, 148
Spin-lattice interaction, 212
Spin-lattice relaxation, 190, 213, 215
Spin-orbit, 46
Spin-orbit coupling, 34, 123, 260
Spin-orbit coupling constant, 34
Spin-orbit interaction, 55, 57, 60. 160
Spin-orbit splitting, 47
Spin magnetic moment, 34
Spin operator, 81-82, 127, 185
Spin packet, 217
Spin quantum number, 31, 85
Spin-spin interaction, 190, 212-213, 218,

220
Spin-spin process, 215
Spin-spin relaxation, 215, 249
Spin-spin relaxation time, 190, 215
Spin temperature, 208, 210
Spin wave, 79-81, 83-86, 90, 228-229, 245
Spin wavefunction, 81
Spin wave resonance, 153-154
Static nuclear susceptibility, 4
Sternheimer factor, 183
Steven’s operators, 4, 56
Stiffness constant, 80, 84, 88-89
Stimulated echo, 221
Stoner criterion, 100, 102, 107, 113
Stoner-Hubbard parameter, 100
Stoner model, 102-107, 109, 111
Stoner parameter, 100
Strain. 127-129, 229-230
Stress. 127-129. 131-132
Strong crystal field. 56
Strong ferromagnet, 103
Strong itinerant magnet, 18. 102

Subshell, 40
Suhl-Nakamura (SN) effect, 229
Suhl-Nakamura (SN) interaction, 213
Superconductor, type II, 118
Superferromagnetism, 17
Superparamagnetism, 16-17,48-49
Surface anisotropy, 126
Susceptibility, 53-54, 71, 76, 78, 97, 99, 104, 

107, 109, 113, 118, 135, 235, 248, 265, 270 
differential, 5 
extrinsic. 244 
intrinsic, 244 
mass, 5-6 
specific, 5 
volume, 5-7, 45

Systeme International d’Unites, see SI

T (tesla), 2
T2, 204, 206
Tj, 194-195, 199, 203-207,210-211,213-214, 

225
T2, 190, 194-196, 199, 203-207,210-211, 

213-214, 216, 220, 222. 249, 281
T*. 215-216, 218-219, 220
Tc (Curie temperature), 13, 52-55, 74-79, 

105, 108-109, 111, 124, 129, 178
Tf (freezing temperature), 17
Tz (lattice temperature), 208, 210
Tn (Neel temperature). 14. 259
Ts (spin temperature), 208
T3/2 law, 87, 90
r (order parameter), 74, 78-79
r (pulse separation), 214, 218-219, 221, 223
r (torque), 124
r() (correlation time), 204-206
Taylor series, 87. 128, 161
Tb?+, 188
Technical saturation, 144
Tesla. 2, 5, 178, 200
Tesseral harmonics, 161
Texture, 132
Thermal average, 74, 173, 177, 193
Thermal reservoir, 189, 207, 209, 211
Thermal vibrations, 203
0p (paramagnetic Curie temperature), 55, 78
6' (Stoner molecular field parameter), 103.

105
Thin film. 125-126, 243
3d, 34
3d electrons. 22,31,91-93. 103
3d elements. 73, 108
3d metals, 88
3d series, 22,56-57.91. 180
3d shell, 13.92
3d transition elements, 20
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Time effects, 148
Tm, 58
Toroid, 10, 12
Total angular momentum, 69, 165, 170, 

188-189, 274
Total magnetic moment, 34
Transferred field, 177, 178
Transition elements, 40, 46, 55
Transition metals, 40, 92-94, 100, 102, 108
Transition probability; 209
Transition rate, 208
Transverse magnetization, 190, 204-205, 

214-219, 232,234
Transverse relaxation, 196, 203, 205, 210, 

213-215
Transverse susceptibility, 232, 234-235
Triplet, 65
Types of magnetism, 12

Uniaxial anisotropy, 23, 124, 126, 131, 135, 
144

Uniform mode, 229
Uniform mode precession frequency, 243
Unit vector, 196
Unpaired electrons, 27

Vacuum magnetic permeability, 2, 29
Vacuum permeability, 3, 119, 235
Vacuum permittivity, 164
Van Vleck induced paramagnetism, 19
Vector model, 31

Vector potential, 166-167, 170-171
Virgin curve, 137-138, 140
Viscosity, magnetic, 149
Ezz, 163, 185, 221

W (crystal field scaling parameter), 58
Wall mobility, 144
Weak crystal field, 56
Weak itinerant magnet, 18, 111
Weak ferromagnet, 102-103
Webers per square meter, 3
Weger process, 212
Weiss approximation, 74
Weiss model, 52-55, 73-75, 77-79, 105
Weiss molecular field, 69
Weiss, P., 49, 51,63
Wigner-Eckart theorem, 163
Work, 119-120, 131
Working point, 121

T,40
Youngs modulus, 128

Z (atomic number), 160, 182
z (number of nearest neighbors), 77, 79, 82
Zeeman levels, 190, 216, 221
Zeeman term, 83
Zener model, 71
Zero-field NMR, 216, 229
£ (relative magnetization), 100, 103-104
ZrZm, 111
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