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Abstract: An accurate determination of the 
unloaded Q-factor of RF and microwave reson- 
ators is required when the electrical properties of 
materials are being measured or when the reson- 
ator is to be characterised for an application in a 
filter or an oscillator. A procedure is described of 
weighted least-square curve fitting to the mea- 
sured magnitude of the reflection coefficient. The 
accuracy of the results is significantly improved by 
incorporating coupling losses in the equivalent 
circuit model. 

1 Introduction 

The need for an accurate measurement of the unloaded 
Q-factor arises in the following situations : 

(a) determination of the material properties of a dielec- 
tric or conductor sample inside a resonant cavity 

(b) determination of the circuit properties of a reson- 
ator that is to be incorporated into a filter or an oscil- 
lator. 

When the measurement is performed with an automatic 
network analyser, the unloaded Q and the coupling coef- 
ficient are most accurately obtained by the data-fitting 
procedures [l-31. For the data measured by a vector 
network analyser, the linear fractional data fitting [4, 51 
provides a convenient and accurate approach to graphi- 
cal display and data processing operations. In some situ- 
ations, only the scalar network analyser is available, 
providing the magnitude, but not the phase, of the reflec- 
tion coefficient. It has been shown [3] that it is possible 
to determine the unloaded Q-factor even in that situation. 
However, the results become inaccurate when coupling 
losses are present in the experimental setup. This paper 
describes an improved data processing procedure which 
is appropriate for moderate coupling losses. 

2 Equivalent circuit 

The magnitude of the input reflection coefficient r is 
measured at a number of frequencies in the vicinity of 
the resonant frequency. The input reflection coefficient 
can be expressed as the following function of frequency o 
[4, eqn. 2201 : 
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The resonant frequency of the unloaded resonator is 
denoted by w, and that of the loaded resonator is 
denoted by wL.  For all practical purposes, wo in the 
denominator can be replaced by wL.  At the outset of the 
data processing procedure, wL is found by determining 
the frequency at which I r I is minimum. The loaded Q- 
factor is denoted QL, the diameter of the Q-circle is 
denoted d,  and the detuned input reflection coefficient is 
denoted rd (a complex number): 

rd = pd' (2) 
An equivalent circuit that corresponds to eqn. 1 is shown 
in Fig. 1. The unloaded resonator is represented by a 
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Fig. 1 Equivalent circuit of Q-factor measurement 

parallel resonant circuit, characterised by the unloaded 
Q-factor Qo , unloaded resonant frequency coo, and resist- 
ant R, which stands for the power dissipated within the 
unloaded resonator. The external loading circuit 
(E network analyser) is characterised by the resistance 
R, . The coupling mechanism which connects the external 
circuit to the unloaded resonator is characterised by an 
impedance R, + jX, . The resistance R, represents the 
losses within the coupling mechanism, and the reactance 
X, represents the extra energy storage introduced by the 
coupling mechanism. 

For a lossy coupling mechanism p < 1, so that the 
Q-circle does not touch the circumference of the Smith 
chart, as indicated in Fig. 2. The squared magnitude of 

I.---- + 
Fig. 2 lnput rejection coefficient against frequency 
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the input reflection coefficient in eqn. 1 can be expressed 
as follows : 

(3) --a, l q 2 t 2  + a 2 t 2  + a3 + a 4 t  = lrI2 
where the coefficients a, and a4 are 

a3 = p 2  + 2pd COS 0 + d2 

a4 = -2p dQL sin 0 
(6)  

(7) 
The relative frequency has been denoted by t 

w - wL t = 2 -  
WO 

It is seen from eqns. 4-7 that the as are expressed in 
terms of circuit parameters to be measured: QL , d, p ,  and 
0. In principle, when the data of N measured frequencies 
are substituted in eqn. 3, one obtains a linear system of N 
equations, to be solved for the four coeficients a, to a4. 
This is done by the least square data fitting procedure. 
Once the values of the four coefficients are determined, 
the quantities of principal interest are easily computed. 

The angle 8 is obtained in the process of evaluating 
the squared magnitude of eqn. 1 as follows 

O = q O - - y  (9) 
It can be seen in Fig. 2 that ip is the phase of r d ,  and y is 
the phase of the vector of the length d, pointing from the 
tip of rd through the center of the Q-circle. The difference 
of these two angles 8 is an angle slightly smaller than n. 
As long as the coupling losses are small, 

cos 8 N -1 and sin 8 cv 0 (10) 
Therefore, a4 N 0, so the system can be treated as consist- 
ing of only three unknown coefficients. Also, a3 simplifies 
to 

a3 N ( p  - d)2 (1 1) 

3 Weighted least-square solution 

For each of the measured frequencies, the values I r I and 
t may be substituted into eqn. 3. An overdetermined 
system of linear equations is created that is solved in 
much the same way as recommended in classical liter- 
ature on the subject [6-81. The procedure is here modi- 
fied by using weighted scalar products as in [4, 51, so 
that each measurement is assigned a different weight. For 
the scalar measurements considered here, this is done in 
the following way. 

When the data of the ith measurement are substituted 
in eqn. 3, the result is not exactly zero, but is equal to 
some small number, ci 

I ri 1%; + a2 t; + a3 + a4 ti - I ri 12 = E i  (12) 
Some measured points will result in a larger error, others 
in a smaller one. A statistically proper procedure is to 
assign to each measurement a weight inversely pro- 
portional to the squared error. If it is assumed for a 
moment that a, to a4 are variables, and G’(L I~)  to 02(a4) 
are their variances, the error propagation formula [9] 
gives the variance of ei as follows 

02(c i )  = I ri 141fG2(U,) + ~ ? G ~ ( U , )  

-k Cz(U3) -k t?G2(U4) (13) 
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Therefore the weight to be assigned to the ith measure- 
ment is 

G 2  p .  = 
I rL 14tfa2(a,) + t f~~(a , )  + g2(a3) + t;02(a4) 

The constant o2 in the numerator is any convenient 
number, the value of which cancels out in the final result. 
A convenient choice is a’ = a2(a3) so that at the resonant 
frequency ( t  = 0) the weight is equal to unity. At the 
outset of computation, the variances G’(u,) to 02(a4) are 
not known. The solution of the system then proceeds in 
several iterations. In the first iteration, the weights are 
evaluated by setting all variances equal to unity. The 
solution of the system provides the values of all four coef- 
ficients and their variances. These are then used in the 
second iteration to compute the weights, etc. The process 
converges very rapidly : third and further iterations do 
not show a noticeable effect on the final results of the 
data fitting. 

The solution of the overdetermined system (eqn. 3) has 
been performed by two different approaches : solving the 
full system consisting of four unknown coefficients, and 
solving the approximate system with the simplifying 
assumption of eqn. 10 that results in only three unknown 
coefficients. It has been found that in most cases both 
approaches give very similar final results, but the four- 
term approach is more prone to numerical difficulties. 
In the simpler, three-term approach, the quantities of 
interest are evaluated as follows. 

(14) 

The loaded Q is computed from eqn. 4: 

QL = J<ai) (15) 
The magnitude of the detuned reflection coefficient is 
obtained from eqns. 4 and 5 : 

There are two possible values of the Q-circle diameter, 
obtained from eqn. 11 : 

d = P * z/(a3> (17) 
Such an ambiguity does not occur in the vector formula- 
tion of the problem [4, 51, because in that case, the linear 
fractional curve fitting procedure results in a single- 
valued solution for d. 

The coupling losses are specified by the diameter d, of 
the ‘coupling loss circle’ indicated in Fig. 2 by a dashed 
line. In that Figure, the losses are exaggerated for better 
display. In the case of small coupling losses, diameter d, 
is only one or two percent shorter than the diameter of 
the Smith chart. Then d, can be approximated as 

d 2 - l + p  (18) 
The coupling coefficient IC that takes into account the 
coupling losses is then computed by [4, eqn. 229) : 

(19) 
1 

- 1  
K = -  

d. 
d 

Finally, the unloaded Q-factor is 

Qo = QLU + IC) (20) 

4 Measured results 

Before applying the procedure to an actual set of mea- 
sured data, a number of simulated data sets has been 
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generated for an assumed equivalent circuit from Fig. 1. 
After the procedure was developed to the point that it 
was capable of accurately recovering the assumed values 
of Qo and IC, it was applied to the measured data. The 
example presented consists of the measured input reflec- 
tion coefficient of an aluminum cavity that contains a 
dielectric resonator [lo]. The actual measurement was 
performed by the vector network analyser. The data file, 
named M450.MEA, has been processed by the linear 
fractional data fitting procedure, and the results are ([14], 
p. 130): 

For the purpose of demonstrating the curve fitting pro- 
cedure for the scalar measurements, only the magnitude 
of the measured reflection coefficient is retained and the 
phase ignored. The three-term approach gives the results 
shown in Fig. 3. It is seen that the overcoupled Qo = 

QL = 4536.9 Qo = 8083.0 IC = 0.7816 
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Fig. 3 Results of three-term curveJitting 

8070.8, agreeing within 0.15% with the value obtained 
from the vector network analyser data. 

Fig. 3 is a ‘print-screen’ reproduction of the monitor 
display obtained by the program called SCALARQ*. The 
dark circles are the measured data. In this measurement, 
there are 51 data points, centred around the frequency 
3.34GHz. The solid line is the fitted curve, computed 
from the coefficients a, to a 3 .  Each of the estimated 
parameters printed to the left of the plot also contains an 
estimated error that has been computed from variances 

It can be seen that the measured data allow two pos- 
sible interpretations: one undercoupled (JC < 1) and the 
other overcoupled (JC > 1). From the measured data 
alone, it is not possible to conclude which of the two 
interpretations is the correct one. In the present example 
the results of another measurement are known (namely 
those obtained by the vector network analyser), so one 
can tell that the correct interpretation is the under- 
coupled one. If the scalar network analyser is the only 
available instrument, some additional experimental verifi- 
cation is needed to decide whether one is dealing with an 
overcoupled or an undercoupled case. For instance, the 
coupling probe may be pulled slightly out of the cavity 
and the entire measurement repeated. One can expect 
two possible outcomes: the undercoupled IC will either 
increase or decrease. In the first case, one may conclude 
that the proper interpretation is the overcoupled one, in 
the last the undercoupled one. 

a2(a1) to 02(a3). 

* The DOS version of the program SCALARQ accompanies the book 
‘Q factor’ [4] 

It is interesting to observe the values of the individual 
weights for this example, plotted in Fig. 4. They have 
been computed by eqn. 14 after three iterations of the 
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Fig. 4 

curve fitting procedure. The weights are normalised, so 
the largest weight is unity. Clearly, the weights strongly 
favour the measured data closest to the resonant fre- 
quency of the loaded resonator. 

5 Comparison with two-term method 

The curve fitting procedure described in [3] can also 
process the data obtained by the scalar network analyser. 
The procedure does not use weighting and the equivalent 
circuit is assumed to have a lossless coupling. Therefore 
the magnitude of the detuned reflection coefficient is 
assumed to be p = 1, so that a, = 0, a3 = (1 - d)’, al = 
a, = Q i .  Only two distinct coefficients remain to be 
fitted, namely a,  and a3. When such a two-term pro- 
cedure is applied to the same set of measured data (file 
M450.MEA), the least-square fitted curve does not agree 
well with the measured data, as can be seen in Fig. 5. The 
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Fig. 5 

unloaded Q-factor computed by the two-term method is 
Qo = 6663, a value which is 17% lower from the one 
obtained by the three-term method. This example 
demonstrates that an overly simplified equivalent circuit 
may lead to a significant loss of accuracy. 

Results of two-term curveJitting 

6 Conclusions 

For an accurate determination of the unloaded Q-factor 
with the scalar network analyser, the magnitude of the 
input reflection coefficient is measured at a number of 
frequencies. When the measured data are substituted into 
a circuit model of the resonator with coupling losses an 
overdetermined system of equations with four unknown 
coefficients is obtained. For moderate coupling losses the 
system can be reduced to three unknown coefficients. 
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This paper describes a three-term procedure of determin- 
ing the coupling coefficient and the unloaded Q-factor. As 
a side benefit, the procedure also provides the error esti- 
mates for the measured quantities. If the coupling losses 
are ignored, the system reduces to a two-term procedure, 
and the accuracy of the results deteriorates. 

An inherent problem of measuring the Q-factor with a 
scalar network analyser is the fact that there are two pos- 
sible interpretations for any set of measured data, one is 
an overcoupled circuit and the other is an undercoupled 
one. A separate test must be performed to determine 
which of the two interpretations is correct. The test pro- 
posed in this paper is to slightly decrease the physical 
coupling and then repeat the measurement. 
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